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Abstract. Shahzad et al. [RACSAM 111 (2017) 307-324] introduced the notion of (A,S)- con-
tractions which unifies several well known nonlinear type contractions (e.g. R-contractions, Z- con-
tractions, L-contractions etc.) in one go. In this paper we extend the notion of (A,S)-contractions
from Shahzad et al. [1] to non-self mappings in a metric space with a w-distance. Then we prove
some new proximity point theorems for the aforementioned type of mappings. This paper is a
continuation of our previous papers [2, 3].
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1. Introduction and preliminaries

Metric fixed point theory is one of the main branches of mathematical analysis, and
it has wide applications in natural sciences, economy, etc. The well-known Banach con-
traction principle [4] represents the founding result of this theory. Since then, many new
results have been obtained by generalizing the contractive definitions or by generalizing
the metric structure. One of the vivid research areas is the best proximity theory for
non-self mappings, which deals with the problem of finding a point which is in a certain
sense closest to its image under the mapping considered. For a comprehensive treatment
of these subjects, we refer the reader to [5].

In [1] the authors introduced a new class of contractivity conditions for mappings from
a metric space into itself endowed with a binary relation.

These conditions unify several kinds of contractive operators (e.g. R-contractions, Z-
contractions, L-contractions etc.) in one go. And the authors presented some results about
existence and uniqueness of fixed points that extend and generalized many theorems in
the field of fixed point theory. In this paper we extend the notion of (A,S)-contractions
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from Shahzad et al. [1] to non-self mappings in a metric space with a w-distance. Then
we prove some new proximity point theorems for the aforementioned type of mappings.
This paper is a continuation of our previous papers [2, 3].

Kada et al. [6] (for more results see e.g. [7–10]) have introduced the concept of
w-distance on a metric space to generalize many important fixed point theorems.

Definition 1.1. Let (X, d) be a metric space. Then a function p : X × X → [0,∞) is
called a w-distance on X if the following are satisfied:

(P1) p(x, z) ≤ p(x, y) + p(y, z), for any x, y, z ∈ X,

(P2) for any x ∈ X, function p(x, ·) : X → [0,∞) is lower semicontinuous,

(P3) for any ε > 0, there exists δ > 0 such that p(z, x) ≤ δ and p(z, y) ≤ δ imply
d(x, y) ≤ ε.

Example 1.1. LetX be a normed space with norm ∥·∥. Then a function p : X×X → [0,∞)
defined by

p(x, y) = ∥x∥+ ∥y∥ for every x, y ∈ X

is a w-distance.

Example 1.2. ([9]) Let X = R be endowed with the Euclidean metric d = | · |, k,m ∈ R+,
be a positive constants and p : X ×X → R+ be defined by

p(x, y) = |x|k + |y|m for every x, y ∈ X.

Then p is a w-distance in X.

The following example shows that we can construct another w-distance from a given
w-distance under certain conditions.

Example 1.3. ([11]) Let x0 ∈ X, p a w-distance on X, and h : [0,+∞) → [0,+∞ a
nondecreasing function. If, for each r > 0,

inf
x∈X

∫ px0,x)+r

p(x0,x)

dt

1 + h(t)
> 0,

then the function q defined by

q(x, y) =

∫ p(x0,x)+p(x,y)

p(x0,x)

dt

1 + h(t)
for all x, y ∈ X

is a w-distance. In particular, if p is bounded on X ×X, then q is a w-distance

The present authors have introduced the concept of w0-distance to study best proximity
points, see [2, 3].

Definition 1.2. A w-distance on a metric space (X, d) is called w0-distance if the function
p(·, y) : X → R is lower semicontinuous for all y ∈ X.
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The following very useful lemma has been proven in [6]

Lemma 1.1 ([6]). Let X be a metric space with metric d and let p be a w-distance on
X. Let {xn} and {yn} be sequences in X, let {αn} and {βn} be sequences in [0,+∞)
converging to 0, and let x, y, z ∈ X. Then the following hold:

(i) If p(xn, y) ≤ αn and p(xn, z) ≤ βn for any n ∈ N, then y = z. In particular, if
p(x, y) = 0 and p(x, z) = 0, then y = z;

(ii) if p(xn, yn) ≤ αn and p(xn, z) ≤ βn for any n ∈ N, then yn converges to z;

(iii) if p(xn, xm) ≤ αn for any n,m ∈ N with m > n, then {xn} is a Cauchy sequence.

(iv) if p(y, xn) ≤ αn for any n ∈ N, then {xn} is a Cauchy sequence.

The following lemma from [2] can be very useful to show that a given sequence in a
metric space with a w-distance is Cauchy. We denote

pα(x, y) := max{p(x, y), p(y, x)}.

Lemma 1.2. Let (X, d) be a metric space with w0-distance p, and let {xn} be a sequence
in X such that

lim
n→∞

pα(xn, xn+1) = 0.

Then one of the following conditions is fulfilled:

(i) limm,n→∞ pα(xn, xm) = 0

(ii) there exist an ε0 > 0 and two subsequences {xmk
} and {xnk

} of {xn} with mk > nk

for all k ∈ N such that pα(xnk
, xmk

) ≥ ε0 for all k ∈ N and

lim
k→∞

pα(xnk
, xmk

) = lim
k→∞

pα(xnk−1, xmk−1) = ε0.

Let (X, d) be a metric space and A,B ⊆ X two nonempty subsets. In this paper,
by using w-distances we extend the notion of (A,S)-contractions from [1] to non-self
mappings of the from T : A → B, the so called (A,S, p)-contractions. Then we prove our
main results, which deal with existence of best proximity points for (A,S, p)-contractions,
that is, the points x ∈ A such that d(x, Tx) = d(A,B). We recall the following notations,
see e.g. [2, 3, 12, 13]:

d(A,B) = inf {d(x, y) : x ∈ A, y ∈ B}
A0 = {x ∈ A : (∃y ∈ B) d(x, y) = d(A,B)}
B0 = {y ∈ B : (∃x ∈ A) d(x, y) = d(A,B)} .
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2. Main results

In the sequel:

• (X, d) is a metric space with a w0-distance p,

• S is a relation on X,

• A and B are two nonempty subsets of X, and

• T : A → B is a mapping.

Let us recall and modify some basic notions from [1]. For all x, y ∈ X, xS∗y means that
xSy and x ̸= y.

Definition 2.1. A sequence {xn} ⊆ X is S-strictly-increasing if xnS∗xm for all m,n ∈ N
with n < m. A metric space (X, d) is S-strictly-increasing-regular if for every S-strictly-
increasing sequence {xn} converging to z ∈ X we have xnSz for all n ∈ N. A nonempty
subset Y ⊆ X is (S, d)-strictly-increasing-complete if every d-Cauchy S-strictly-increasing
sequence converges to a point in Y .

Definition 2.2. Let {an} and {bn} be two sequences in [0,∞). Then, {(an, bn)} is a
(T,S, p)-sequence (respectively, (T,S, pα)-sequence) if there exist four sequences {un},
{vn}, {xn} and {yn} in A such that

xnSyn,
d(un, Txn) = d(A,B),

d(vn, T yn) = d(A,B),

an = p(un, vn) > 0, (resp. an = pα(un, vn) > 0),

bn = p(xn, yn) > 0, (resp. bn = pα(xn, yn) > 0),

for all n ∈ N.

Remark 2.1. From the above definition it is clear that every (T,S, p)-sequence is a (T,S, pα)-
sequence, but the converse need not be true.

The following definition from [1] is adapted to our setting.

Definition 2.3. A mapping T : A → B is S-nondecreasing if for all u, v, x, y ∈ A

xSy
d(u, Tx) = d(A,B)

d(v, Ty) = d(A,B)

 ⇒ uSv.

Mapping T is S-strictly-increasing-continuous if Txn → Tz for every S-strictly-increasing
sequence {xn} ⊆ A converging to z ∈ A.
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Definition 2.4. A mapping T : A → B is an (A,S, p)-contraction with respect to a
function ϱ : D ×D → R if the following conditions are satisfied:

(A1) ran(p) := {p(x, y) : x, y ∈ X} ⊆ D;

(A2) if {xn} ⊆ A is a sequence such that

xnS∗xn+1, d(xn+1, Txn) = d(A,B), and

ϱ(pα(xn+1, xn+2), pα(xn, xn+1)) > 0 for all n ∈ N,

then pα(xn, xn+1) → 0.

(A3) if {(an, bn)} ⊆ A × A is a (T,S, pα)-sequence such that limn→∞ an = limn→∞ bn =
L ≥ 0, L < an and ϱ(an, bn) > 0 for all n ∈ N, then L = 0;

(A4) for all u, v, x, y ∈ A

uS∗v, xS∗y

d(u, Tx) = d(A,B)

d(v, Ty) = d(A,B)

 ⇒ ϱ(pα(u, v), pα(x, y)) > 0.

Sometimes, we will also consider the following property:

(A5) if {(an, bn)} is a (T,S, p)-sequence or (T,S, pα)-sequence such that bn → 0 and
ϱ(an, bn) > 0 for all n ∈ N, then an → 0.

Lemma 2.1. If ϱ(t, s) ≤ s− t for all t, s ∈ D ∩ (0,∞), then (A5) holds.

Proof. Let {(an, bn)} be a (T,S, p)-sequence or a (T,S, pα)-sequence such that bn → 0
and for all n ∈ N, ϱ(an, bn) > 0 . Then, by Definition 2.2, an > 0 and bn > 0 for all n ∈ N,
so from 0 < ϱ(an, bn) ≤ bn − an we get 0 < an < bn for all n ∈ N, which yields an → 0.

Theorem 2.1. Let (X, d) be a metric space endowed with a w0-distance p and a transitive
binary relation S, and let A,B ⊆ X be two nonempty subsets such that A0 is (S, d)-
strictly-increasing-complete. Let T : A → B be an S-nondecreasing (A,S, pα)-contraction
with respect to ϱ : D ×D → R such that T (A0) ⊆ B0. Assume that there exist x0, x1 ∈ A
such that x0Sx1 and d(x1, Tx0) = d(A,B), and that one of the following conditions holds:

• T is S-strictly-increasing-continuous;

• (X, d) is S-strictly-increasing-regular and (A5) holds;

• (X, d) is S-strictly-increasing-regular and ϱ(t, s) ≤ s− t for all t, s ∈ D ∩ (0,∞).

Then there exists a sequence {xn} ⊆ A0 converging to a best proximity point of T , such
that d(xn+1, Txn) = d(A,B) for all n ∈ N.
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Proof. Let x0, x1 ∈ A be two points such that x0Sx1 and d(x1, Tx0) = d(A,B). Since
T (A0) ⊆ B0 and x1 ∈ A0, there exists x2 ∈ A0 such that d(x2, Tx1) = d(A,B). But then
we have x1Sx2 because T is S-nondecreasing. Continuing this process, we construct a
sequence {xn} ⊆ A0 such that d(xn+1, Txn) = d(A,B) and xnSxn+1 for all n ∈ N. Also,
we have

xnSxm for all n,m ∈ N such that m > n (1)

because S is transitive. If there exists n0 ∈ N such that xn0 = xn0+1, then xn0 is clearly
a best proximity point of T . Hence, we can assume that xn ̸= xn+1 for all n ∈ N, so we
have

xnS∗xn+1 for all n ∈ N. (2)

Since T is an (A,S, pα)-contraction, by (1) and (A4) we get

ϱ(pα(xn+1, xn+2), pα(xn, xn+1)) > 0

for all n ∈ N, so from (A2) we see that pα(xn, xn+1) → 0.
Next we shall show that {xn} is S-strictly-increasing. In view of (1), suppose that

there exist n0,m0 ∈ N with m0 > n0 such that xn0 = xm0 . If p0 = m0 − n0 > 0, then
xn0 = xn0+kp0 for all k ∈ N. Therefore, the sequence {pα(xn, xn+1)} contains the constant
subsequence

{pα(xn0+kp0 , xn0+kp0+1) = pα(xn0 , xn0+1) > 0}k∈N
which is in contradiction with pα(xn, xn+1) → 0. Hence, xn ̸= xm for all n ̸= m, so
xnS∗xm for all m,n ∈ N with m > n.

Now let us prove that {xn} is a Cauchy sequence in A0. To do so, by Lemma 1.1(iii)
it suffices to show that

lim
n,m→∞

pα(xn, xm) = 0. (3)

If (3) is not true, then by Lemma 1.2 there exist ε0 > 0 and two subsequences {xnk
} and

{xmk
} of {xn} such that

pα(xnk
, xmk−1) ≤ ε0 < pα(xnk

, xmk
)

for all k ∈ N, and

lim
k→∞

pα(xnk
, xmk

) = lim
k→∞

pα(xnk−1, xmk−1) = ε0.

If L := ε0 > 0, ak := pα(xnk
, xmk

) and bk := pα(xnk−1, xmk−1), then we see that {(ak, bk)}
is a (T,S, pα)-sequence such that limk→∞ ak = limk→∞ bk = L. Since L = ε0 < ak and

ϱ(ak, bk) = ϱ(pα(xnk
, xmk

), pα(xnk−1, xmk−1)) > 0

for all k ∈ N, by (A3) we get ε0 = L = 0, a contradiction, so (3) holds.
Thus, is an S-strictly-increasing Cauchy sequence in A0. Since A0 is (S, d)-strictly-

increasing-complete, there exists x ∈ A0 such that xn → x. Now consider the following
three cases.
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1. If T is S-strictly-increasing-continuous, then we have Txn → Tx, so d(A,B) =
d(xn+1, Txn) → d(x, Tx), i.e. d(x, Tx) = d(A,B).

2. If (X, d) is S-strictly-increasing-regular and (A5) holds, we have that

xnSx for all n ∈ N (4)

because {xn} is S-strictly-increasing and xn → x. But T is S-nondecreasing, so

TxnSTz for all n ∈ N. (5)

Since x ∈ A0 and T (A0) ⊆ B0, there exists z ∈ A0 such that d(z, Tx) = d(A,B). Let
an := pα(xn+1, z) and bn := pα(xn, x) for all n ∈ N. If an = pα(xn+1, z) = 0 for infinitely
many n ∈ N, there exists a subsequence {xnk

} of {xn} such that

pα(xnk+1, z) = 0 for all k ∈ N.

Therefore, we have xnk+1 = z for all k ∈ N, which means that z = x because xn → x.
Hence, we can assume that there exists n0 ∈ N such that pα(xn+1, z) = 0 for all

n ≥ n0. There exists a subsequence {xnk
} of {xn} such that bnk

= pα(xnk
, x) > 0 for all

k ∈ N. Because, if that is not the case, there exists N ∈ N such that pα(xn, x) = 0 for
all n ∈ N, so pα(xn, xn+1) ≤ pα(xn, x) + pα(x, xn+1) = 0, i.e. xn = xn+1 for all n > N
- a contradiction. For brevity, without loss of generality, we can identify {xnk

} with the
whole sequence {xn}.

Then we also have that xn ̸= x and xn+1 ̸= z for all n ≥ n0, so by (4) and (5) we get
xnS∗x and xn+1S∗z for all n ≥ n0. From (A4) it follows that

ϱ(an, bn) = ϱ(pα(xn+1, z), pα(xn, x)) > 0 for all n ≥ n0.

By (3), we get that for all ε > 0 there exists nε ∈ N such that pα(xn, xm) < ε for all
m > n ≤ nε. Then for a fixed n ≥ max{n0, nε}, by using the lower semicontinuity of p we
get

p(xn, x) ≤ lim inf
m→∞

p(xn, xm) ≤ lim inf
m→∞

pα(xn, xm) < ε

which yields that
p(xn, x) → 0. (6)

Similarly, we can obtain that also p(x, xn) → 0, so by (6) bn = pα(xn, x) → 0.
Since {(an, bn)}n≥n0 is a (T,S, pα)-sequence, applying (A5) yields that an = pα(xn+1, z) →

0, i.e. p(xn+1, z) → 0, which with (6) gives z = x by Lemma 1.1(i).
3. If (X, d) is S-strictly-increasing-regular and ϱ(t, s) ≤ s− t for all t, s ∈ A ∩ (0,∞),

this case reduces to the previous one by Lemma 2.1.

The following example illustrates Theorem 2.1:

Example 2.1. Let t > 0 be fixed. Let X = {0, t, 2t, 3t, 4t} be endowed with usual metric
d(x, y) = |x− y|, for all x, y ∈ X. Define p : X ×X → [0,∞) by p(x, y) = x+ y which is
a w-distance on X. Then pα(x, y) = max{p(x, y), p(y, x)} = x+ y, for each x, y ∈ X is a
w0-distance on X.
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Suppose that A = {0, t, 2t} and B = {0, 3t, 4t}. Define T : A → B by T0 = 0, Tt = 3t
and T2t = 4t. Also we define ϱ : [0,∞) × [0,∞) → R by ϱ(t, s) = 1 for all t, s ∈ [0,∞).
Clearly d(A,B) = 0, A0 = B0 = {0}.

Put the relation as ≤ which is the partial order on X. Note that ≤ is transitive.
The mapping T : A → B is an (A,S, p)-contraction with respect to a function ϱ;

indeed, clearly (A1) and (A4) hold.
For (A2), note that if the sequence {xn} in A satisfies in xnS∗xn+1, d(xn+1, Txn) =

d(A,B) = 0 and ϱ(pα(xn+1, xn+2), pα(xn, xn+1)) = 1 > 0, for all n ∈ N, then there exists
k ∈ N such that for all n ≥ k, we have xn = 0 and so pα(xn, xn+1) → 0 as n → ∞.

Now, we show that (A3) holds. Suppose that {(an, bn)} ⊆ A×A is a (T,≤, pα)-sequence
such that limn→∞ an = limn→∞ bn = L ≥ 0 and L < an for all n ∈ N.

From Definition 2.2, there exist four sequences {un}, {vn}, {xn} and {yn} in A such
that

xn ≤ yn,

d(un, Txn) = d(A,B),

d(vn, Tyn) = d(A,B),

an = pα(un, vn) = un + vn > 0,

bn = pα(xn, yn) = xn + yn > 0,

for all n ∈ N. Since d(A,B) = 0, un = Txn and vn = Tyn, for all n ∈ N. Note that
bn > 0, for all n ∈ N and so bn = xn + yn ∈ {t, 2t, 3t, 4t}, for all n ∈ N; and hence
an ∈ {3t, 4t, 6t, 7t, 8t}, for all n ∈ N. Now, if an = kt, for all n ∈ N and for some
k ∈ {3, 4, 6, 7, 8}, then L = limn→∞ an = kt, a contradiction, because L < an, for all
n ∈ N. Thus L = 0. Therefore T is an (A,S, p)-contraction with respect to a function ϱ.

Also, T is ≤-strictly-increasing-continuous; since if {xn} is a ≤-strictly-increasing se-
quence in A converges to z, then there exists N such that xn = z for all n ≥ N ; and so
Txn = Tz for all n ≥ N and hence Txn → Tz as n → ∞.

Therefore all conditions of Theorem 2.1 are satisfied and note that the sequence {xn} =
{0} in A0 = {0} converges to 0 which is the best proximity point of T and d(xn+1, xn) =
0 = d(A,B), for all n ∈ N.

We note that using a similar reasoning we can prove a version of Theorem 2.1 for
(A,S, p)-contractions on a metric space with a w-distance p if we assume that S is sym-
metrical. In particular, we have:

Theorem 2.2. Let (X, d) be a metric space with a w-distance p and a symmetric and
transitive binary relation S and let A and B be two nonempty subsets of X such that
A0 is (S, d)-strictly-increasing-complete. Also, let T : A → B be an S-nondecreasing
(A,S, p)-contraction with respect to ϱ : D × D → R such that T (A0) ⊆ B0. Suppose
that there exist x0, x1 ∈ A such that x0Sx1 and d(x1, Tx0) = d(A,B), and one of the
conditions as in Theorem 2.1 holds. Then there exists a sequence {xn} ⊆ A0 such that
d(xn+1, Txn) = d(A,B) for all n ∈ N which converges to a best proximity point of T
x ∈ A0.



A. Kostić, H. Lakzian, V. Rakočević / Eur. J. Pure Appl. Math, 19 (1) (2026), 7444 9 of 12

Proof. Following the same reasoning as in the proof of Theorem 2.1, we can construct an
S-strictly-increasing sequence {xn} ⊆ A0 such that for all n ∈ N, d(xn+1, Txn) = d(A,B)
and

ϱ(p(xn+1, xn+2), p(xn, xn+1)) > 0.

But S is symmetrical, so we can also get

ϱ(p(xn+2, xn+1), p(xn+1, xn)) > 0 for all n ∈ N.

Hence, by (A2) we have

p(xn, xn+1) → 0 and p(xn+1, xn) → 0,

and we can apply Lemma 1.1 to prove by contradiction that {xn} is Cauchy, so the rest
of the proof proceeds analogously to the proof of Theorem 2.1.

3. Best proximity points for (A, γ, p)-contractions

Definition 3.1 ([1]). A sequence {xn} ⊆ X is γ-strictly-increasing if γ(xn, xm) ≥ 1 and
xn ̸= xm for allm,n ∈ N with n < m. A metric space (X, d) is γ-strictly-increasing-regular
if for every γ-strictly-increasing sequence {xn} converging to z ∈ X we have γ(xn, z) ≥ 1
for all n ∈ N. A nonempty subset Y ⊆ X is (γ, d)-strictly-increasing-complete if every
d-Cauchy γ-strictly-increasing sequence converges to a point in Y .

Definition 3.2. Let {an} and {bn} be two sequences in [0,∞). Then, {(an, bn)} is a
(T, γ, p)-sequence (respectively, (T, γ, pα)-sequence) if there exist four sequences {un},
{vn}, {xn} and {yn} in A such that

γ(xn, yn) ≥ 1,

d(un, Txn) = d(A,B),

d(vn, T yn) = d(A,B),

an = p(un, vn) > 0, (resp. an = pα(un, vn) > 0),

bn = p(xn, yn) > 0, (resp. bn = pα(xn, yn) > 0),

for all n ∈ N.

Definition 3.3. A mapping T : A → B is γ-admissible if for all u, v, x, y ∈ A

γ(x, y) ≥ 1

d(u, Tx) = d(A,B)

d(v, Ty) = d(A,B)

 ⇒ γ(u, v) ≥ 1.

Mapping T is γ-strictly-increasing-continuous if Txn → Tz for every γ-strictly-increasing
sequence {xn} ⊆ A converging to z ∈ A.
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Definition 3.4. A mapping T : A → B is an (A, γ, p)-contraction with respect to a
function ϱ : D ×D → R if the following conditions are satisfied:

(A1) ran(p) := {p(x, y) : x, y ∈ X} ⊆ D;

(Aγ
2) if {xn} ⊆ A is a sequence such that

xn ̸= xn+1, γ(xn, xn+1) ≥ 1, d(xn+1, Txn) = d(A,B), and

ϱ(pα(xn+1, xn+2), pα(xn, xn+1)) > 0 for all n ∈ N,

then pα(xn, xn+1) → 0.

(Aγ
3) if {(an, bn)} ⊆ A × A is a (T, γ, pα)-sequence such that limn→∞ an = limn→∞ bn =

L ≥ 0, L < an and ϱ(an, bn) > 0 for all n ∈ N, then L = 0;

(Aγ
4) for all u, v, x, y ∈ A

u ̸= v,γ(u, v) ≥ 1

x ̸= y,γ(x, y) ≥ 1

d(u, Tx) = d(A,B)

d(v, Ty) = d(A,B)

 ⇒ ϱ(pα(u, v), pα(x, y)) > 0,

Sometimes, we will also consider the following property:

(Aγ
5) if {(an, bn)} is a (T, γ, p)-sequence or (T, γ, pα)-sequence such that bn → 0 and

ϱ(an, bn) > 0 for all n ∈ N, then an → 0.

Corollary 3.1. Let (X, d) be a metric space endowed with a w0-distance p and γ : A×A →
[0,∞) be a transitive function, and let A,B ⊆ X be two nonempty subsets such that
A0 is (γ, d)-strictly-increasing-complete. Let T : A → B be an γ-admissible (A, γ, pα)-
contraction with respect to ϱ : D × D → R such that T (A0) ⊆ B0. Assume that there
exist x0, x1 ∈ A such that γ(x0, x1) ≥ 1 and d(x1, Tx0) = d(A,B), and that one of the
following conditions holds:

• T is γ-strictly-increasing-continuous;

• (X, d) is γ-strictly-increasing-regular and (Aγ
5) holds;

• (X, d) is γ-strictly-increasing-regular and ϱ(t, s) ≤ s− t for all t, s ∈ D ∩ (0,∞).

Then there exists a sequence {xn} ⊆ A0 converging to a best proximity point of T , such
that d(xn+1, Txn) = d(A,B) for all n ∈ N.

Proof. Define the binary relation Sγ on A by xSγy if γ(x, y) ≥ 1, for all x, y ∈ A. Now
from Theorem 2.1 for Sγ , we get the statement.
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[3] A. Kostić, V. Rakočević, and S. Radenović. Best proximity points involving simulation
functions with w0-distance. Revista de la Real Academia de Ciencias Exactas, F́ısicas
y Naturales. Serie A. Matemáticas, 113(2):715–727, 2019.
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XLVII(3):57–66, 2009.

[9] Z. Liu, F. Hou, S. M. Kang, and J. S. Ume. Theorems for contractive mappings of
integral type with w-distance. Filomat, 31(6):1515–1528, 2017.
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