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Abstract. The present study develops a generalised version of the exponential Lord-Shulman
thermoelasticity theory that takes into account the combined effects of body forces and time-
harmonic thermal sources. The appropriate governing equations are generated and analytically
solved by means of the harmonic wave technique, assuming that the medium under discussion
is traction-free. Displacements, dilatation, temperature distribution, and stress components are
among the non-dimensional findings for field variables. Comprehensive numerical evaluations are
used to support the explicit analytical formulas developed for these variables. Examining how the
operator expansion order and temporal evolution affect the physical fields’ behaviour is assumed
particular attention. The significance of higher-order modelling in capturing complex dynamic
thermoelastic responses is highlighted by graphical representations that unequivocally show that
the operator expansion order plays a crucial role in influencing all thermoelastic parameters.

2020 Mathematics Subject Classifications: 74B05, 74A15, 74H10

Key Words and Phrases: Half-space, LS theory, operator expansion order, time-harmonic
thermal sources, body forces

1. Introduction

When applying the Lord—Shulman (LS) generalised thermoelastic theory to a half-
space, taking body forces into account presents a number of difficulties [1]. The analytical
solution of governing equations is made more difficult by the increasing complexity of
the interaction between mechanical and thermal fields. Body forces, such as centrifugal
and gravitational forces, break symmetry and frequently call for numerical techniques
rather than closed-form solutions. Predicting energy dissipation under mechanical and
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thermal loads is made more tough by the thermal relaxation time in LS theory. Boundary
conditions must carefully address both mechanical and thermal effects, especially when
body forces influence stress and heat flux distributions. Several studies employed LS theory
to analyze thermoelastic problems. Sherief and Anwar [2] studied an infinite annular
cylinder with traction-free boundaries under thermal loading using LS theory. Laplace
transforms and Fourier series inversion were applied, with results compared to coupled
thermoelastic models.

In recent decades, generalized thermoelasticity has evolved through a wide spectrum of
modern mathematical modeling approaches that extend the classical Lord—Shulman frame-
work to include temperature-dependent properties, multiphysics couplings, microstructure
effects, fractional-order formulations, nonlocal theories, and memory-dependent deriva-
tives [3-12]. Othman [3] derived generalized thermoelastic equations using LS theory,
accounting for temperature-dependent elasticity in an isotropic medium. Solutions for
temperature, displacement, and stress were obtained via normal mode analysis. Othman
[4] modeled rotating thermo-viscoelastic half-spaces under thermal shock with one relax-
ation time. Exact solutions for field variables were derived using normal mode analysis
under two boundary conditions. Kumar and Rani [5] analyzed a thermoelastic medium
with voids under mechanical and thermal loads. Numerical solutions for field quantities
and volume fraction were designed and visualized. For a half-space with constant material
properties, Youssef [6] created a unified controlling framework for thermoelasticity that
included both classical and generalised theories. El-Maghraby [7] examined the distribu-
tions of temperature and stress in a 2D generalised thermoelastic medium exposed to body
forces and thermal shock. Abbas et al. [8] used LS theory and finite element methods to
examine plane wave propagation in a fiber-reinforced anisotropic thermoelastic half-space
under a magnetic field. Sherief et al. [9] explained a 1D problem for a viscoelastic medium
and developed equations for generalised thermoviscoelasticity, demonstrating uniqueness
and reciprocity theorems. Using Laplace transforms, Sherief and Abd El-Latief [10] uti-
lized fractional-order thermoelasticity to a 1D thermal shock problem in a medium and
quantitatively compared the results with coupled and generalised theories. Kiani and Es-
lami [11] showed a nonlinear thermoelastic study of an isotropic layer using LS theory,
retaining the energy equation’s nonlinear form without linearization. Rani [12] examined
2D deformation in a generalized thermoelastic medium with voids and microtempera-
tures under mechanical loading, comparing LS and Green and Lindsay (GL) theories via
normal-mode analysis.

Higher-order wave formulations that capture dispersion, attenuation, and relaxation-
induced wave phenomena in generalised thermoelastic materials have advanced signifi-
cantly in tandem with the aforementioned discoveries [13-21]. Singh et al. [13] derived
governing equations for isotropic generalized thermoelastic media subjected to hydrostatic
initial stress using LS theory. Analytical solutions yielded dimensional wave velocities
in the z-y plane. Othman and Singh [14] modeled a rotating micropolar thermoelastic
medium exposed to an instantaneous thermal point source on its free surface. Kaushal
et al. [15] studied time-harmonic deformation in a two-temperature (2T) generalized
thermoelastic half-space using Hankel transforms in the frequency domain. Singh [16]
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analyzed Rayleigh surface waves in a 2T thermoelastic medium using LS theory, solv-
ing governing equations for wave solutions. Othman and Song [17] studied generalized
micropolar magneto-thermoelasticity in a thermally conducting half-space under an ax-
ial magnetic field. Singh and Singh [18] analyzed rotational effects on plane waves in a
thermo-piezoelectric half-space, incorporating Coriolis and centrifugal forces, and derived
solutions for three quasi-plane waves. Sherief et al. [19] solved axi-symmetric 2D viscoelas-
tic problems using Laplace-Hankel transforms and asymptotic expansions to examine wave
propagation, with graphical results for temperature, displacement, and stress. Lotfy et al.
[20] solved a generalized thermo-microstretch problem for an infinite space with a mode-I
crack, subject to prescribed thermal and mechanical loads on the crack surfaces. Tiwari
[21] explored variable thermal/electrical conductivity effects in a magnetized half-space
under thermal shock using LS theory.

Another active line of research focuses on internal heat-generation mechanisms, includ-
ing variable thermal conductivity, distributed or moving heat sources, and thermomechani-
cal diffusion effects, which play a central role in transient heating processes [22—29]. Tianhu
et al. [22] investigated electromagneto-thermoelastic waves in a semi-infinite conductor un-
der thermal shock and axial magnetic fields using LS generalized thermoelasticity. Youssef
and El-Bary [23] developed a 1D generalized thermoelastic theory with variable thermal
conductivity for a layered thin plate. Applying Laplace transforms and a direct solution
method, they analyzed a thermally shocked, traction-free sandwich structure. Ram et
al. [24] provided a general solution for generalized thermodiffusion in elastic solids via
Fourier transforms. They demonstrated the approach with concentrated and distributed
harmonic sources in the frequency domain. El-Maghraby and Abdel-Halim [25] examined
a 2D transient problem for an infinite thermoelastic half-space with axisymmetric temper-
ature distribution and heat sources, using LS theory. Laplace and Hankel transforms were
applied for the traction-free boundary. El-Maghraby [26] analyzed a 2D generalized ther-
moelastic medium exposed to body force and thermal shock, with internal heat sources.
Laplace and exponential Fourier transforms were used under the LS theory. Goswami and
Sarkar [27] investigated time-harmonic plane waves in an infinite thermoelastic medium
using LS theory. Hafed and Zenkour [28] formulated a thermodynamically consistent frac-
tional thermoelasticity model to study the thermal shock response of anisotropic circular
hollow cylinders. In a related work [29], they examined the effects of the Lord—Shulman
generalized heat conduction theory on an isotropic thermoelastic medium subjected to
thermal shock and an applied normal load at its upper boundary.

Complementing these advances are contributions employing advanced numerical and
operator-based techniques, such as state-space formulations, high-dimensional coupled
solvers, refined multi-phase-lag models, and fractional-order algorithms, that enable ac-
curate simulation of complex thermoelastic fields [30-39]. Youssef and Al-Lehaibi [30]
studied a medium with constant elastic parameters using 2T generalized thermoelasticity.
Applying Laplace transforms and state-space techniques, they solved for thermal shock
and traction-free boundary conditions. Ezzat and Youssef [31] developed a 3D general-
ized thermoelastic model for a half-space exposed to thermal shock. Laplace and double
Fourier transforms solved the coupled equations for a traction-free surface. Tripathi et
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al. [32] established a 2D generalized thermoelastic-diffusion model for a half-space with
permeating substances using LS theory. Youssef and Al-Lehaibi [33] developed a 3D gen-
eralized thermoelastic theory for a half-space under a moving rectangular heat source and
a traction-free surface, solved via Laplace and double Fourier transforms. Guo et al. [34]
studied thermo-hydro-mechanical interactions in a saturated poroelastic half-space under
surface mechanical or thermal loads. Said [35] analyzed wave propagation in a rotating
nonlocal generalized thermoelastic medium with a moving internal heat source. Alshaikh
[36] modeled generalized thermoelasticity in a porous medium using LS for a 2D isotropic
homogeneous fracture field. Sarkar and Singh [37] extended the LS theory by integrating a
strain-rate term with a relaxation parameter through extended thermodynamics. Zenkour
and Aljadani [38] solved a nonlocal magneto-thermoelastic problem for a thick plate un-
der harmonic heating and magnetic fields using LS theories and Eringen’s nonlocal model.
Saleh [39] analyzed 1D thermal shock and body force effects in a half-space using Laplace
transforms and short-time asymptotic expansions.

Together, these theoretical and computational developments highlight the ongoing need
for refined operator expansion strategies, such as the present approach, to accurately rep-
resent relaxation effects and wave-based behavior in contemporary generalized thermoelas-
ticity. In most problems of the thermoelasticity theory, the body forces may be neglected.
In the present article, we take into consideration the inclusion of the body forces. Also,
we suggest that the medium is exposed to both time-harmonic thermal and body force
sources. A generalized exponential Lord—Shulman thermoelasticity theory is developed to
get the governing equations for the traction-free medium, that solved using Laplace trans-
forms, with numerical inversion applied to obtain nondimensional solutions. Analytical
expressions and numerical results for displacements, dilatation, temperature, and stresses
were derived, highlighting the substantial influence of operator expansion order and time
on all physical quantities.

2. Basic equations and problem formulation

Let us consider a homogeneous, isotropic, thermoelastic medium of infinite extent. A
Cartesian coordinate system (z, y, z) is adopted to define the position of any point within
the medium at time t. Let u, v denote the mechanical displacement components, 011, 099,
012 - the identically non-vanishing stress components in the plane, 6 - the temperature
measured from a reference temperature T, p - the mass density, £, F5 - the body force
components, q1, g2 - the heat flux components, cg -the specific heat of the solid at con-
stant volume, v = (83X + 2u)ay, A, p - Lame’s constants and «; -the thermal expansion
coefficient. The linear equations of plane generalized thermoelasticity for a transversely
isotropic material within the theory of extended thermodynamics read:
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Equations of motion
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The heat conduction equation (2), according to Lord and Shulman’s thermoelasticity
theory in its refined form [1, 38, 40-43], is given by

00 0 (Ou Ov
KV?0 =D, — Ty | =— + — 4
v O[PcEat+ 075, <a$+ay>+PQ], (4)
where K is the thermal conductivity, V? = 59722 + 5%227 and @ is the internal heat source.

The differential operator Dy is expressed as

Do = ;) nl o’ 5)

where N may be denoted by the operator expansion order, and 7 is the relaxation time.
In the following, we focus on determining all field variables for various values of N.
Special attention is given to the case N— oo, which is of particular significance and is
considered here within the framework of generalized thermoelasticity. If we analyze the

operator in Eq. (5) as N— oo, we get

: 0
Dy— e, 0= 6
0 € 3 t ata ( )
which corresponds to the exponential time-shift operator, i.e.,
™ f(r,t) = fr,t+7). (7)

Equation (4) may be dealt with the simple LS thermoelasticity theory when N = 1.
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3. Formulation of the problem

The bounding surface of the solid is taken to be traction-free and is subjected to
time-harmonic thermal and mechanical sources. All associated field quantities, such as
displacement components, temperature change, and stress fields, are functions of the co-
ordinates x, y, and time ¢ only, implying a two-dimensional formulation where no variation
occurs along the z-axis.

The heat conduction equation without any heat source is

KV?%0 = Dy (pepb + vTne) (8)
where
u Qv 0 oL gntl
= Di=Dp =Y
“Tortoy VT 0T Zniord Q

When N — oo, Dy = e,
The equation of motion presented by the displacement components is

0 a0 0?
HVPu+ (A4 )+ B =y = py,
ox Ox ot (10)
V2o + (A + )@JFF— o _ 0

4. Solution of the problem

4.1. Dimensionless forms

To transform the above equations into dimensionless forms, we define the following
nondimensional variables:

P €o 1o C% / v
{m,yauav}zi{l’vya’uﬂv}a {t77—}:7{t;7-}7 0 :7207
! ! P (11)
! 1 / n 9 A+2u K
O-ij:ﬁo-ij’ F; :73Fi7 Cy = , n=—.
P P P pCE

Then, using Eq. (11), the dimensionless dilatation, stresses, equations of motion, and heat
equation become (omitting the prime)

ou Ov

= %+@, (12)

e

aj+ @_9
Ox clay ’
ou @

0922 =Cl7— +

dr ' dy 6, (13)

ov  Ou
012 = C2 %4-@ )

011 =
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4.2. Solution due to the Helmholtz decomposition approach

The Helmholtz decomposition technique is a mathematical tool employed to simplify
and analyze vector fields by resolving them into irrotational (curl-free) and solenoidal
(divergence-free) components. In the framework of thermoelasticity, particularly within
generalized theories such as Lord-Shulman, this method proves especially useful for ad-
dressing coupled displacement fields that arise from the interaction of mechanical and
thermal phenomena. We will apply Helmholtz decomposition to the displacements u and
v to simplify the governing equations.

oo ov 06 0w -
or Oy oy Ox
where ¢ is the scalar potential (related to dilatational waves), and v is the vector potential
(related to shear waves). Once again, the harmonic wave solution to the derived system of
partial differential equations can be assumed using the method of separation of variables,
expressed as

{0,9,0} (z,y,t) = {¢", ¢", 0"} (x)e™ ™Y, (18)

where ¢* and * are additional amplitudes of the corresponding functions, w is a complex
frequency, ©+ = v/—1, and m is a real wave number in the y-direction. In addition, the
components of the body force are considered as

{1, B} (w,y,t) = {e 7 o7 r ) gttomy, (19)

in which 1, €29 are constants. The equations of motion become

* * i -z
< . —263>¢ 0 = Q1e , (20)
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d? d?
<dx2 - 264) 0 — <2C5dx2 - CG> ¢ == O, (22)
where
03:§(m —|—UJ), Cy = 5(771 +D1) C5:§5D1, cg = em~Dy,
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3 — Co ’ o '
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The solution of Egs. (20) and (22) are given by
2
(07,0 =3 {1, B} Ae™5% + {Q1, Qp} e, (24)
where A; are the integration parameters, and &; are the following roots:
5%7532034'04_"65?507 (25)
€ = 3 — 2c3 (ca — c5) + (ca + ¢5)° — c.
The coefficients 8; and Q; in Eq. (24) are given by
ﬁi:CS_C4_65:':£O ﬁ1:29%65—667 ﬁ229%—2647
46365 — Cg Q Q (26)
Q=0 [Qil — QQ% (03 + ¢y +c5) + 4degeq + Cﬁ] .
Also, the solution of Eq. (21) yields
P = Agef&z + Q3€7Q2x, (27)
where As is an additional integration parameter and
1
Q3 = (28)

Qac (6 - 0F)

So, the displacements, dilatation, and stresses of the half-space according to the Helmholtz
decomposition method are expressed as

2
u = [Z Bl-&Aie_f” +mm (Age_&’x + Qge_QQQC) — Qlﬁze_gw ewt—i—zmy’ (29)
=1

2
v= [Z im B Aje™ 5% + €3 A3 4+ amQge 1T 929369”1 ewttmy, (30)
i—1
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M 2
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where

ki =0 (&2 —em?) =1, G =B (a€? —m?) —1, U = —2umBica,

kg =1m(c1 —1)&, (3= —k3, U3=—cz(&+m?),

_ _ _ _ _ 33
ke = (O] —e1m?) = Q1, G =0 (Qer —m?) — U, Y4 = —20mQ Qaca, (33)
Ry = Zmﬁzﬁg (Cl — 1) s C5 = —AKgp, 195 = —6293 (Q% + m2) .
The boundary conditions at x = 0 are considered as
0 =0y, oc11=012=0. (34)

After applying the above boundary conditions, one can obtain the integration constants
in the form:

A4
A] = Kjv ] = 172137 (35)

where
A:193(I€1—/€2)+/€3(’l92—’l91),
Al = 293[(@1 — (90) K9 — R4 — I{,5] — Iig[(ﬁl — (90) ’192 — 194 — 195],
Ay =r3 [(Q1 —00) V1 — V4 — 95 — V3 [(h — 60) K1 — ka — k5],
Az = (Q1 — 0p) (k192 — K2V1) + (Ka + Ks5) (91 — 2) — (K1 — K2) (V4 + U5) .

(36)

5. Numerical results and discussions

Figures 1-14 show all variables along the z-direction of the medium using the refined
LS thermoelasticity theory. To demonstrate the analytical procedure outlined above, we
now consider a numerical example. The considered half-space is composed of silicon,
characterized by the following material properties:

A=7.76 x 101 N/m?, 1 =3.86x 10" N/m? p=8954 kg/m?3, T, =293 K,

37
cp=3831J/(kgK), a=178x10""N/(m’K), K =38 W/(mK). (37)

The thermoelastic solution for the half-space is finished by the application of the boundary
conditions. For simplicity, the numerical outcomes are offered by means of realistic esti-
mates of thermoelastic variables. These results are gained for t = 0.5, 7 = 0.35, m = 7/5,
w= —0.95—1.251, O = Qy = 103, and 6y = 10. This work contains 14 figures that
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analyze various aspects of thermoelastic behavior in a half-space under time-harmonic
sources, comparing various theories and parameters.

We evaluate the field variables for different IV cases with the case N— oo addressed in
generalized thermoelasticity. Figures 1-7 compare the effect of the values of the operator
expansion order N on the temperature distribution (6), displacement distributions (u and
v), dilatation (e), normal stresses (011 and o922), and tangential stress (o12). The case of
N— oo (the exponential case) is considered in Figures 8-14 to discuss the effect of the
time parameter on all field variables.

0 5 10 15 X 20

Figure 1: Variation of temperature distribution 6 with horizontal distance x for different N using CTE and LS
theories.

Figure 1 displays the variation of temperature distribution ¢ with horizontal distance
x using classical thermoelasticity (CTE) theory and Lord-Shulman (LS) thermoelasticity
theory for different N. All curves start from the same initial value of #. The peak tem-
perature is highest at the origin and then decays with increasing . For N = 1 (simple
LS theory), the temperature curve shows stronger oscillations with higher amplitude. For
N = 2, oscillations are reduced, and the curve lies closer to the limiting case. For N — oo,
the oscillations are further suppressed, and the curve smooths out, approaching a stable
distribution. The CTE solution exhibits a much smoother decay without pronounced os-
cillations, reflecting the instantaneous propagation assumption. In contrast, LS theory
(with finite N) captures wave-like effects due to thermal relaxation time, leading to os-
cillatory behavior. As N increases, the LS results tend toward the CTE curve but still
retain wave-like features. All LS curves (N > 1) converge gradually toward zero with
diminishing oscillations. The CTE curve also tends to zero but more smoothly, with no
oscillations.

Figure 2 displays the variation of displacement distribution v with horizontal distance
x using CTE theory and LS thermoelasticity theory for different N. The displacement u
starts with a steep negative value at x = 0, then rises sharply to a positive peak. The max-
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Figure 2: Variation of displacement distribution u with horizontal distance x for different N using CTE and LS
theories.

imum peak value differs among models, with the N = 1 case giving the largest overshoot.
For N = 1, the displacement curve exhibits stronger oscillations with higher amplitude,
deviating more from CTE. For N = 2, the oscillations are weaker, and the curve lies closer
to the limiting case. For N — oo, the displacement smooths out further, closely following
the CTE prediction with mild oscillatory features. The CTE solution shows a smoother
transition, with no oscillations beyond the peak. In contrast, the LS-based solutions cap-
ture wave-like behavior in the displacement due to the finite thermal relaxation time.
At larger x, LS curves with higher NV converge toward the CTE result. Long-distance
behavior (z > 10), all curves tend toward zero displacement, with oscillations gradually
vanishing. The simple LS results (N = 1) show damped oscillations, while CTE decays
smoothly without oscillations.

Figure 3 displays the variation of displacement distribution v with horizontal distance
z using CTE theory and LS thermoelasticity theory for different values of N. The classical
thermoelasticity solution exhibits a smoother response with relatively small oscillations in
the transverse displacement v. Its profile damps out quickly as = increases. The LS model
with N = 1 predicts stronger oscillatory behavior, especially near the origin (z < 5), where
the amplitude of v is significantly larger than that of the CTE and higher-order L.S models.
This designates that the lower-order truncation of the expansion enhances wave dispersion
and amplifies oscillations. The LS model with N = 2 delivers a closer approximation to
the N — oo case, reducing the overshoot and oscillations observed in the N = 1 case.
The refined LS model (N — o0) serves as the converged solution. Its distribution closely
matches the N = 2 curve, confirming that a relatively low-order expansion is sufficient
to capture the essential physics. Increasing N decreases the discrepancy between LS
predictions and the limiting case (N — o0). The CTE model fails to capture these
wave-like oscillations, highlighting the advantage of generalized thermoelasticity theories,
similar to LS.
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Figure 3: Variation of displacement distribution v with horizontal distance x for different N using CTE and LS
theories.

Figure 4 illustrates the variation of dilatation distribution e with horizontal distance x
for different IV using CTE and LS theories. The dilatation e jumps from a large positive
value near the surface (x = 0), reflecting the strong thermal expansion at the boundary.
With increasing «, e decays rapidly, then oscillates about zero before finally tending to
equilibrium (e — 0). The CTE produces a smooth, monotonic decay from the initial
peak. No oscillations appear, consistent with pure diffusion behavior. The LS theory with
N = 1 shows pronounced oscillations around zero, with a strong undershoot below —1
near x ~ 5. This is the most dispersive response, indicating the presence of thermal wave
effects. For LS with N = 2, oscillations are greatly reduced compared to N = 1. The
profile tracks closer to the monotonic trend while retaining mild wave-like features. For
LS with N — o0, the response nearly coincides with N = 2, indicating rapid convergence
of the expansion. The oscillations are almost suppressed, giving a curve much closer to
CTE, but with a slightly higher initial peak and smoother decay.

Figure 5 shows the variation of the normal stress distribution ¢1; with horizontal
distance x for different N using CTE and LS theories. The normal stress o1; shows
oscillatory variation with horizontal distance x, unlike a purely monotonic decay. Starting
near zero at the boundary, the stress builds to a peak tensile value, then oscillates between
positive (tensile) and negative (compressive) values before gradually damping toward zero
at larger distances. The CTE theory exhibits a smooth, weakly oscillatory profile with a
smaller amplitude. The stress amplitude remains low, showing a diffusion-like response
without strong wave effects. The LS with N = 1 gives the largest oscillations with a sharp
tensile peak (~ 2.5) around z = 4, followed by a strong compressive trough below —1.
Additional oscillatory lobes appear at larger x. This highlights the wave-dominated nature
of the single-term LS model. For LS with V = 2, oscillations are damped significantly, with
stress values closely tracking the converged curve. The main tensile peak and subsequent
compressive dip are smaller compared to N = 1, indicating enhanced stability. The
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Figure 4: Variation of dilatation distribution e with horizontal distance x for different N using CTE and LS
theories.

LS with N — oo delivers a smooth, converged profile with oscillations strongly reduced
compared to N = 1. The stress curve is nearly identical to the N = 2 result, confirming
rapid convergence of the expansion.

Figure 6 illustrates the variation of the normal stress distribution o9 with horizontal
distance x for different N using CTE and LS theories. The stress component o9s differs
oscillatorily with horizontal distance z, showing both compressive and tensile regions.
The response is stronger near the boundary, with oscillations gradually decaying toward
zero as z increases. The CTE theory displays a smooth, weak oscillatory profile with
relatively small amplitudes. The maximum tensile stress is lower than in the LS theory,
and oscillations decay more quickly. Indicates purely diffusive stress propagation without
strong wave effects. The simple LS theory (N = 1) shows the largest oscillations: A strong
compressive trough at x =~ 0 reaching —3. Followed by a sharp tensile peak (~ 3) around
x =~ 4. Additional oscillatory lobes at larger distances. This demonstrates that truncation
at N = 1 leads to exaggerated wave amplitudes. For LS with N = 2, oscillations are
much more stable, closely tracking the converged solution. The main compressive and
tensile peaks are present but with reduced amplitudes compared to N = 1. The LS theory
with V — oo delivers the reference converged solution, showing a realistic stress-wave
profile with controlled oscillations. Nearly identical to the N = 2 case, confirming fast
convergence with increasing V.

Figure 7 shows the variation of the tangential stress distribution 12 with horizontal
distance x for different N using CTE and LS theories. The tangential stress displays
a damped oscillatory profile with respect to horizontal distance x. Unlike the normal
stresses (011, 022), the amplitude of o12 is much smaller (maximum around 0.5), reflecting
the secondary nature of shear stresses compared to the dominant normal stresses under
thermal loading. Oscillations diminish gradually as x — 20, approaching zero. The
CTE theory predicts relatively low shear stress levels, with a smooth and slowly decaying
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Figure 5: Variation of normal stress distribution 011 with horizontal distance x for different N using CTE and
LS theories.

response. Oscillations are weak compared to LS, showing diffusion-like stress transfer. The
simple LS produces the largest oscillations with alternating peaks and troughs. The first
tensile peak (=~ 0.45) occurs near x =~ 1.5, followed by a compressive trough at x ~ 4.5.
Overestimates the shear response, similar to what was seen for o117 and o99. For the LS
theory with NV = 2, shear stresses are much closer to the converged solution. Oscillations
are well represented, but amplitudes are moderated compared to N = 1. The LS theory
with N — oo provides the stable reference solution, with realistic shear stress oscillations.
Nearly identical to the N = 2 case, confirming rapid convergence of the truncated series
expansion.

Figure 8 shows the 3D distribution of temperature 6 using LS theory (N — o0) in
(a) z-y plane and (b) space-time domain. In Fig. 8(a), the temperature € is largest near
the heated edge, reaching a pronounced positive peak. Moving away from the boundary,
0 shows a peak—trough sequence (positive peak — negative undershoot — small ripples)
that decays rapidly with x. This is the hallmark of the LS finite-speed heat conduction.
Across 0 < y < 2, the surface is nearly ridge-like—amplitude slightly decreases with y and
the oscillations smooth out, indicating mild transverse attenuation (and a small phase
lag) compared with the dominant transport along z. For larger z, the surface flattens
toward 6 = 0, showing that the thermal disturbance is localized near the boundary and
becomes negligible at a distance. So, in the exponential LS limit, heat propagates as
damped thermal waves primarily along x, with only modest lateral (y) dispersion, yielding
a smoothly decaying 3D temperature field.

In Fig. 8(b), at the surface x = 0, the temperature 6 reaches its highest value, reflecting
the imposed harmonic heating. As x increases, 6 exhibits an oscillatory decay pattern—a
strong positive peak followed by a negative trough and smaller ripples. This reflects finite-
speed thermal wave propagation predicted by the LS model. For increasing ¢ (from 0.3
to 0.7), the amplitude of oscillations decreases gradually, and the thermal field tends to
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Figure 6: Variation of normal stress distribution o22 with horizontal distance x for different N using CTE and
LS theories.

flatten out, indicating temporal damping of the heat wave. The oscillations diminish more
quickly with distance in & than with time in ¢, confirming that heat transport is strongly
localized near the heated boundary. At larger x and later ¢, the surface approaches 6 =~ 0,
meaning the disturbance vanishes and the medium relaxes toward equilibrium. So, under
LS theory with N — oo, the temperature field in the space—time domain demonstrates
damped thermal wave propagation that weakens with both distance and time, highlighting
the finite propagation speed and non-Fourier behavior of the model.

Both plots in Fig. 8 show a large peak at the heated boundary (z = 0) and a damped
oscillatory decay as x increases—signature of LS thermal waves (finite-speed, non-Fourier).
The LS exponential limit yields a thermal field that propagates as a damped wave primarily
in z. Across y the field is relatively uniform (mild lateral dispersion), whereas over time
the same field loses amplitude and smooths out—capturing the finite-speed conduction
with relaxation that distinguishes LS from classical diffusion.

Figure 9 shows the 3D distribution of displacement u using LS theory (N — o00) in
(a) z-y plane and (b) space-time domain. The displacement in Fig. 9(b) displays its
largest negative values at the boundary (x = 0), consistent with the strong thermoelastic
response to localized heating. This suggests that thermal expansion near the surface
causes significant compressive or inward motion. As x increases, the amplitude of uuu
decays gradually, approaching a nearly uniform small value. This reflects the finite-speed
propagation and relaxation characteristic of the LS model. The displacement surface shows
weak but noticeable oscillatory behavior in the y-direction. The variations are smoother
than along in z, indicating that lateral effects are less pronounced compared to depth-
wise transport. Beyond a short distance into the medium, the displacement changes sign,
showing alternating compressive and tensile zones. This wave-like oscillation is a hallmark
of non-Fourier heat conduction coupled with elasticity.

In Fig. 9(b), at early times (¢ ~ 0.3), the displacement reaches its maximum ampli-
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Figure 7: Variation of tangential stress distribution o12 with horizontal distance x for different N using CTE
and LS theories.

tude near the boundary, indicating the immediate thermoelastic response to the applied
thermal load. As in Fig. 9(a), the amplitude of u diminishes with increasing x. This
confirms the damped wave nature of displacement propagation predicted by LS theory.
The displacement shows oscillatory changes with time at fixed z, starting with a sharp
rise, then alternating between compressive and tensile states. The oscillations dampen as ¢
increases, eventually approaching a quasi-steady state. The surface shows clear traveling-
wave characteristics: the displacement disturbances move outward in z as ¢ increases,
rather than diffusing instantly as in classical thermoelasticity.

Figure 9 illustrates that under the exponential LS model, the thermal excitation at the
boundary generates finite-speed, damped displacement waves: the largest inward/outward
motions occur at the heated surface, propagate into the medium as oscillatory fronts, and
attenuate with both distance and time, while lateral variations remain comparatively weak.

Figure 10 shows the transverse displacement v under the exponential LS model (N —
00). In Fig. 10(a), v(x,y) at fixed t shows that the largest |v| occurs at the heated surface
x = 0; amplitude decays rapidly with depth. The lateral variation in y is present but much
weaker than the z-dependence, producing gentle ripples superposed on the strong through-
thickness decay. The displacement v changes sign, revealing an alternating shear-type
response induced by the thermal loading. In Fig. 10(b), v(z,t) in space-time shows that
early times yield stronger oscillations and steeper gradients near x = 0; with increasing t,
oscillations damp and the profile smooths. The disturbances propagate inward with finite
speed (wavefronts) and attenuate in both x and ¢.

In Fig. 10, both plots confirm that v is generated at the boundary and decays quickly
into the solid, consistent with a damped wave rather than a diffusive spread. The spatio-
temporal surface in Fig. 10(b) makes the traveling nature of the disturbance explicit.
While in Fig. 10(a), it captures its instantaneous spatial footprint. The variation across y
is secondary; the dominant transport and coupling are along x (normal to the heated face).
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Figure 8: 3D distribution of temperature 6 using LS theory (N — o0) in (a) x-y plane and (b) space-time
domain.

The sign changes in v across x and t reflect alternating shear states as the thermoelastic
wave passes.

Figure 11 shows the 3D distribution of dilatation e using LS theory (N — c0) in (a)
x-y plane and (b) space-time domain. In Fig. 11(a), the dilatation e reaches its maximum
at the boundary where the thermal load is applied. The values are significantly higher
here, indicating strong volumetric expansion due to intense surface heating. As x increases
(moving deeper into the medium), e decreases steeply, showing that volumetric expansion
is strongly localized near the surface and diminishes quickly with depth. Small oscillations
appear in e as x increases, suggesting wave-type propagation of the thermoelastic distur-
bance, characteristic of LS theory with finite thermal wave speed. The dilatation shows
only mild dependence on the lateral direction y, remaining nearly uniform across it. The
dominant gradient is along x.

In Fig. 11(b), the dilatation is maximum at the heated boundary, reaching values
above 8 units, higher than the z-y profile in Fig. 11(a). This designates a very strong
thermoelastic expansion localized at the surface. As x increases, e decreases rapidly,
showing that the thermoelastic response weakens as the disturbance propagates inward.
At early times (¢ ~ 0.3), dilatation is strongest near the boundary, showing the immediate
response to thermal shock. As time increases (¢t — 0.7), the dilatation decreases gradually,
reflecting energy dissipation and attenuation of thermoelastic waves with time. The os-
cillatory/ripple patterns along z are preserved over time, but their amplitude diminishes.
The distribution suggests finite-speed propagation of thermoelastic waves (a hallmark of
LS theory), as opposed to purely diffusive behavior in classical Fourier models.

The dilatation under the LS model is a surface-initiated, finite-speed, damped volu-
metric wave: it peaks at x = 0, decays rapidly with depth, and relaxes with time—showing
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Figure 9: 3D distribution of displacement u using LS theory (N — o0) in (a) z-y plane and (b) space-time
domain.

weak lateral variation and strong through-thickness, transient behavior.

Figure 12 shows the 3D distribution of normal stress 017 using LS theory (N — 00)
in (a) z-y plane and (b) space-time domain. In Fig. 12(a), the 3D distribution of the
normal stress 011 in the x-y plane under LS theory (N — oo) shows that the stress is
surface-localized with pronounced oscillatory peaks near the boundary (x = 0). The stress
amplitude decreases with depth (y), indicating that thermoelastic stresses are strongest
at the heated surface and decay as the wave propagates inward. The oscillatory nature
reflects the wave-like character of the LS model. In Fig. 12(b), the 3D distribution of o1
in the -t domain shows that it is highly time-dependent, with sharp peaks at early times
that gradually attenuate as time progresses. The oscillatory behavior along = highlights
the propagation of stress waves away from the surface, while the decay over time confirms
the damping effects inherent to the LS theory.

The normal stress 011 under LS theory (N — o0) is controlled by transient thermoe-
lastic waves that originate at the heated boundary, showing strong surface localization,
oscillatory wavefronts, and rapid attenuation with both depth and time. These results
confirm the wave-propagation nature of the LS model, where stresses are not diffusive but
instead travel as damped elastic waves.

Figure 13(a) displays the 3D distribution of normal stress o2 using LS theory (N — 00)
in the x-y plane. The stress magnitude is largest near the boundary surface (z ~ 0) and
decays with increasing depth (x). The pattern alternates between compressive and tensile,
indicating the propagation of thermoelastic stress waves. The stress variation with y is
relatively smooth and less pronounced, highlighting that the dominant stress response
occurs along the z-direction (depth) rather than across y. Regions of compression and
tension coexist, consistent with thermoelastic wave reflections and superposition effects
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(b)

Figure 10: 3D distribution of displacement v using LS theory (N — o0) in (a) x-y plane and (b) space-time
domain.

within the medium. So, the normal stress o2 under the LS theory is strongly concentrated
near the surface and propagates inward as damped thermoelastic waves with alternating
tensile-compressive character, while variations across y remain limited compared to depth
variations.

Figure 13(b) exhibits the 3D distribution of normal stress o9 using the LS theory (N —
00) in the space-time domain. The stress exhibits strong peaks at very early times (¢ ~
0.3), particularly near the surface (z ~ 0), showing the immediate thermoelastic response
to the applied thermal loading. Similar to Fig. 13(a), the maximum stress is concentrated
at the surface, gradually decaying with depth (z) as thermoelastic waves propagate inward.
Oscillatory tensile-compressive stress patterns emerge, but their amplitude decreases over
time, confirming the dissipative nature of the LS theory. As time advances, the stress o9
diminishes significantly, reflecting both spatial and temporal damping of the thermoelastic
disturbance. So, o925 in the space-time domain is highly transient and surface-localized,
with strong early-time stress peaks that decay rapidly in both space and time. This
behavior illustrates the damped propagation of thermoelastic normal stress waves under
LS theory.

Finally, Figure 14 shows the 3D distribution of the tangential stress o2 using LS theory
(N — o0) in (a) -y plane and (b) space-time domain. In Fig. 14(a), o1 rises sharply at
lower values of z (near the origin), reaching its peak in the region z ~ 2 to 5, while further
along the z-axis the stress amplitude decreases and oscillates with a diminishing trend.
Along the y-axis, the stress shows a rapid decay as y increases, indicating that tangential
stresses are more concentrated near the surface region (low y) and gradually dissipate into
the depth of the medium.

The plot in Fig. 14(b) presents the tangential stress 012 as a function of space ()
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Figure 11: 3D distribution of dilatation e using LS theory (N — o0) in (a) z-y plane and (b) space-time
domain.

and time (t). The stress is initially large at small times, especially close to the boundary
region (low z), showing a sharp rise that forms a stress front. As time progresses, the
stress profile spreads in the x-direction, with oscillatory attenuation, meaning that stress
waves propagate and weaken with both distance and time. Negative stress values perform
in certain regions, representing stress reversal (phase lag effect), consistent with relaxation
processes in the LS thermoelastic theory.

In general, Fig. 14 highlights that under the LS generalized thermoelasticity framework
(N — o00), the tangential stress 012 exhibits localized peaks near the boundary and decays
with both depth (y) and time (¢). The oscillatory nature of the distributions confirms
the wave-like propagation of thermoelastic stresses with finite speed (a key feature of
LS theory), combined with relaxation damping. This demonstrates that shear stresses
are most significant near the loaded boundary and at early times, but they diminish
progressively in both space and time due to thermoelastic diffusion and wave attenuation.

6. Conclusions

In this study, the exponential LS model predicts finite-speed, damped thermoelastic
waves originating at the heated surface. The response is surface-localized and decays
rapidly with z; lateral spread is small. Temporal evolution shows initial strong response
— oscillatory relaxation — decay to equilibrium. Classical thermoelasticity (CTE), which
would expect smoother, non-wave diffusive displacement without travelling fronts, is qual-
itatively different from this behaviour. The thermal wave propagation predicted by LS
theory is strongly influenced by the operator expansion order N. Stronger thermal wave
effects are reflected in the more noticeable oscillations caused by the truncation at low V.
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Figure 12: 3D distribution of normal stress 011 using LS theory (N — o0) in (a) z-y plane and (b) space-time
domain.

Higher N makes the solution smoother and more in line with the CTE results and the
limiting situation. Unlike the LS theory, the CTE theory is unable to capture oscillatory
wave-like properties because it lacks a relaxing effect.

Damped thermoelastic waves are superimposed over the diffusive response by thermal
relaxation (LS), and dispersion and overshoot are controlled by the truncation order N.
Higher N produces quick convergence towards the infinite-order (exponential) LS limit
and systematically reduces spurious oscillations. The transverse displacement v is more
dispersive than the longitudinal u at low N, so adopting N > 2 (or the exponential form
N — o0) is advisable for accurate, physically smooth predictions of both components.

The dilatation is highly sensitive to the truncation order N. The simple LS case
(N = 1) exaggerates oscillations, while N = 2 and especially N — oo provide refined,
smooth responses that closely approximate the CTE trend but still retain thermal relax-
ation effects. The normal stress distribution illustrates the wave-dominated response of LS
thermoelasticity compared to the diffusion-dominated behavior of classical thermoelastic-
ity. While truncation at N = 1 exaggerates oscillations, higher-order truncations (N = 2
or N — o0) provide accurate, stable stress fields. This confirms that the exponential LS
model converges quickly and reliably captures thermal-stress wave propagation effects.

The tangential stress follows a wave-like but less intense distribution compared to the
normal stresses. The LS theory captures shear stress oscillations realistically, while the
CTE model underestimates them. The convergence with N = 1 is rapid, with N = 2
already approximating the infinite case very closely. For stress prediction under thermoe-
lastic waves, use LS with at least N = 2 (or the N — oo exponential form) to obtain
stable, physically credible stress fields. Normal stresses carry the primary thermoelastic
wave signature; shear stress is secondary and smaller in magnitude. The exponential LS
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Figure 13: 3D distribution of normal stress o2z using LS theory (N — c0) in (a) z-y plane and (b) space-time
domain.

limit offers a clean, damped wave response that reconciles wave effects with numerical
stability—something the classical theory and the N = 1 truncation each miss in different
ways.

According to LS thermoelasticity theory, the displacement u exhibits weaker lateral
variation, propagates as damped oscillations into the medium, and is strongly localised
close to the heated border. In contrast to the strictly diffusive trend predicted by conven-
tional thermoelasticity, the results demonstrate the finite-speed, wave-like behaviour of
thermoelastic reactions. The transverse displacement v under the exponential LS model is
a secondary, shear-dominated, finite-speed response; it is strongest at the heated bound-
ary, propagates inward as a damped thermoelastic wave, exhibits mild lateral variation,
and relaxes toward equilibrium as time advances. The dilatation under the exponential LS
model is substantially surface-localized, declining quickly with depth and showing sharp
peaks close to the heated boundary. Strong initial responses that rapidly diminish in both
space and time characterise its extremely time-dependent evolution. The deformation is
dominated by normal expansion along the boundary surface, reflecting the brief, wave-like
propagation of thermoelastic volumetric strain.

The results show that the displacement, dilatation, and normal stress fields are signifi-
cantly concentrated around the heated surface and rapidly diminish with depth. The dis-
placement exhibits damped oscillations, but the dilatation highlights the primary surface-
driven volumetric expansion. The stress distribution, which alternates between tension
and compression, illustrates the passage of thermoelastic waves. All fields display signif-
icant peaks at early times that progressively fade in the space-time domain, as predicted
by LS theory, illustrating the transitory and wave-like nature of thermoelastic response.
Under LS theory with an exponential (N — o00) operator, o9 is a transient, surface-
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Figure 14: 3D distribution of tangential stress 012 using LS theory (N — o0) in (a) z-y plane and (b) space-time
domain.

localized normal stress that propagates inward as a damped thermoelastic wave. Peak
loads occur close to the boundary and shortly after heating begins, then attenuate quickly
in both space and time—an important design cue for predicting where and when maximum
stresses will arise.

Tangential stresses are concentrated in the near-surface region, as confirmed by the
tangential stress o1 in the spatial domain, which shows prominent peaks close to the
boundary and rapidly decreases with depth. In the space-time domain, o195 exhibits a
strong rise at first, then oscillatory attenuation, which suggests that stress waves are
propagating at a finite speed before relaxing. Overall, the findings show that the transient
wave-like behaviour and localised nature of thermoelastic shear stresses, which decrease
with increasing time and distance, are both captured by the LS theory.
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