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Abstract. The (undirected) power graph P(G) of a finite group G has vertex set G and an edge
{z,y} whenever one of z,y is a positive power of the other. Power graphs were introduced in
directed form by Kelarev—Quinn and, in the undirected group setting, by Chakrabarty—Ghosh—Sen,
and have since been studied widely.

In this paper, we give an explicit and computation-friendly treatment of P(C,,) and P(Dsz,) from a
unified perspective. For the cyclic group C,,, we show that adjacency is governed by divisibility
of element orders, identify P(C,,) as a blow-up of the comparability graph of the divisor lattice,
and derive closed formulas for degrees and edge counts. Exact expressions are obtained for the
clique number and chromatic number as the maximum totient-weight of a divisor chain, and for
the independence number as the width of the divisor poset.

For the dihedral group Ds,,, we establish a sharp structural decomposition: P(Ds,,) is obtained
from P(C,,) by attaching n pendant leaves at the identity. This yields direct transfer principles for
several invariants and, in particular, an exact formula for the independence number

a(P(Dan)) = n+ W'(n),

where W’ (n) denotes the width of the divisor poset of n with the element 1 removed. We conclude
with algorithmic remarks showing that the main parameters can be computed efficiently from the
prime factorization of n.
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1. Introduction

1.1. Background and motivation

Graphs canonically associated with algebraic objects often encode subtle structural
information while remaining amenable to explicit computation. Classical examples include
Cayley graphs, commuting graphs, and various subgroup-lattice graphs, each designed to
translate algebraic data into combinatorial language. The power graph is another natural
construction: it records the containment relations among cyclic subgroups by declaring
two elements adjacent whenever one is a positive power of the other. Equivalently, edges
reflect comparability of the cyclic subgroups generated by vertices. The directed version
goes back to Kelarev—Quinn [1], while the undirected version for semigroups (and hence
for groups) was formalized by Chakrabarty—Ghosh—Sen [2]. Since then, power graphs
have been investigated from many perspectives, including isomorphism problems, metric
invariants, extremal questions, and forbidden subgraph phenomena; see Cameron—Ghosh
[3] and the surveys [4-8].

A recurring theme in this area is that power graphs lie at an interface between group
theory and order theory. Indeed, the power relation is inherently “poset-like”: if x = ™ then
(x) C (y), and adjacency in the undirected power graph is precisely the symmetrization of
this containment relation. Consequently, many graph-theoretic parameters (clique number,
chromatic number, independence number, diameter, degree distribution) can often be
expressed in terms of subgroup structure, element orders, and associated lattices. This
makes explicit computations feasible for families of groups with well-controlled subgroup
lattices, and it motivates the present focus on cyclic and dihedral groups, two fundamental
and ubiquitous examples.

This paper concentrates on the families of cyclic groups C), and dihedral groups Da,,
which serve as basic testing grounds for general phenomena. For cyclic groups, the subgroup
structure is completely determined by divisors of n: for each d | n there is a unique subgroup
of order d, and the number of elements of order d is ¢(d) (see, e.g., [9, 10]). As a result,
the power relation admits a particularly clean reformulation: adjacency can be described
purely by divisibility among element orders. This reduces many questions about P(C),) to
combinatorial questions on the divisor poset (or divisor lattice) of n. In particular, one
can view P(C,) as a “blow-up” of a comparability graph arising from this poset, so that
several invariants become accessible through standard tools from posets and perfect graph
theory.

For dihedral groups Dy, the geometry of the presentation (rotations and reflections)
produces an even more transparent power-graph structure. The rotation subgroup (r) = C,
is normal and contributes a copy of the cyclic power graph. Reflections have order 2 and
interact with the power relation in a rigid way, which leads to a decomposition of P(Da;,)
into a cyclic “core” together with a simple attachment of reflection vertices. This separation
allows one to transfer a range of invariants from P(C),) to P(D2,) almost mechanically
and to obtain closed formulas with minimal additional work. From a broader viewpoint,
the cyclic-dihedral case illustrates a general strategy: identify a structured subgroup (here
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the rotations) that already controls the main complexity, and treat the remaining elements
via a clean graph-theoretic attachment.

1.2. Contributions

Our first goal is to present a unified and self-contained account of P(C),) that emphasizes
explicit formulas and a poset/comparability-graph perspective. In particular:

e we describe adjacency in P(C,,) purely by divisibility of element orders;

e we express w(P(Cy)) and x(P(C)) as a maximum totient-weighted chain sum in the
divisor poset of n;

e we show «(P(C))) equals the width of the divisor poset (hence is computable via
coefficients of [[,(1 4+ z + -+ + 2%));

e we give explicit formulas for degrees and edge counts in terms of order strata.

A key technical point is giving a complete proof that y = w by using perfectness: P(C,)
is a blow-up of a comparability graph, comparability graphs are perfect, and replication
preserves perfectness [11, 12].

Our second goal is to treat dihedral groups Ds, by an exact decomposition theorem:

P(Dsy) = P(Cy) with n pendant leaves attached at the identity.

This yields clean transfer statements for degrees, cliques, chromatic number, triangles, and
edges. It also gives an explicit independence formula

a(P(Dan)) = n+ W'(n),

where W' (n) is the width of the divisor poset with the minimum element 1 removed.

1.3. Organisation of the paper

The paper is organised as follows. In Section 2 we fix notation and record basic
facts about power graphs and cyclic/dihedral groups. In Section 3 we summarise the
main theorems and the invariants we compute. Detailed proofs for cyclic groups appear in
Section 4, including a complete proof of x(P(Cy)) = w(P(Cy)). The dihedral case is handled
in Section 5 via the structural decomposition and its consequences. Finally, Section 6
provides worked examples, Section 7 discusses computation from prime factorizations, and
Section 8 lists concluding remarks and open directions.

2. Preliminaries and setup

We collect notation and basic facts used throughout.



S. Aljohani, J. Nisar, R. A. Padder / Eur. J. Pure Appl. Math, 19 (1) (2026), 7517 4 of 13

2.1. Power graphs

Let G be a finite group with identity element e. The (undirected) power graph P(G) is
the simple graph with vertex set V(P(G)) = G, where two distinct vertices z,y € G are
adjacent if and only if one is a positive power of the other, i.e.,

{z,y} € E(P(G)) <= (ImeNwithz=9y") or (Im € N with y =z™).

Equivalently,  and y are adjacent if and only if z € (y) or y € (x), which in turn is
equivalent to comparability of the cyclic subgroups (z) and (y) under inclusion. We write
(x) for the cyclic subgroup generated by x, and ord(x) = |(z)| for the order of x.

Two basic consequences of the definition will be used repeatedly. First, for every x € G
we have z°7(®) = ¢, 50 e is adjacent to every vertex of P(G) (except itself). Hence P(G)
is connected. Second, since every vertex is at distance at most 1 from e, we immediately
obtain

diam(P(G)) < 2, rad(P(G)) =1 if |G| > 2,

and diam(P(Q)) € {0,1,2} depending on whether |G| =1, P(G) is complete, or neither.

2.2. Cyclic groups and divisor data

For n > 1, we write C, for the cyclic group of order n. We will frequently use the
standard structure theorem for cyclic groups: for each divisor d | n there exists a unique
subgroup of C,, of order d, and the elements of order d are precisely the generators of that
subgroup. In particular, the number of elements of order d equals FEuler’s totient function
o(d); see [9, 10].

We also use the divisor poset of n. Let

Div(n) :={d e N:d|n}

equipped with the partial order given by divisibility. If
t
n = prl with distinct primes p; and exponents a; > 1,
i=1

then every divisor d | n corresponds uniquely to an exponent vector (ey,...,e;) with

0<e¢; <a;via
t

d= pr’

i=1

Under this correspondence, divisibility becomes coordinatewise comparison:

Hp?’ | Hpii — ¢ < f; foralli,
i i

so Div(n) is (noncanonically) isomorphic to the product of chains [[;_;{0,1,...,a;}.
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2.3. Dihedral groups

For n > 2, we write Dy, for the dihedral group of order 2n, presented by

2

Doy = (ros| " =e, 8 =e, srs=17").

The subgroup (r) is the rotation subgroup and is cyclic of order n, hence (r) = C,,. Every
element of Dy, can be written uniquely in the form r* or sr¥ for 0 < k < n. The elements

sr¥ are the reflections; using the relation srs = r~! one checks

(572 = srksr® = s(r*s)rk = s(srF)rF = e,
so each reflection has order 2. We will exploit the dichotomy between rotations and
reflections to describe P(Ds,,) by a clean decomposition into a cyclic “core” and a simple
attachment of reflection vertices.

3. Main results

We now summarise the main statements proved later.

For cyclic groups, Theorem 1 establishes a clean adjacency criterion in P(Cy,): two
vertices are adjacent if and only if their element orders are comparable under divisibility.
This immediately yields a completeness criterion: P(C),) is complete exactly when n is
a prime power (Corollary 1), a condition already implicit in early work on power graphs
(3, 4].

We then relate the main colouring and clique invariants of P(Cy,) to a single divisor-chain
optimisation. Define

A(n) := max { Z o(d): CC{d:d]|n} is a chain under divisibility}.
deC

Using this, we prove that
w(P(Cp)) = A(n) and  x(P(Cn)) = A(n),

see Theorems 2 and 3. The chromatic statement uses a complete perfectness argument
(Lemmas 1 to 3).

For the independence number, Theorem 4 identifies a(P(C),)) with the width W (n)
of the divisor poset. We also give a practical way to compute W(n) from the prime
factorisation of n using coefficients of a product polynomial (Theorem 4).

Turning to dihedral groups, Theorem 5 shows that P(Day) is obtained from P(C,,)
by attaching n pendant leaves at the identity. As a consequence, the clique number and
chromatic number are unchanged from the cyclic situation (Corollary 2). Finally, writing
W'(n) for the width of the divisor poset with 1 removed, we prove

a(P(Day)) = n+ W'(n)

in Theorem 6.
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4. Power graphs of cyclic groups

4.1. Adjacency and completeness

Theorem 1 (Adjacency in P(Cy)). Let G = Cy, = (g). For z,y € G with ord(z) = d; and
ord(y) = dy, the following are equivalent:

(a) {x,y} is an edge of P(G);
(b) dy | dy ordy | dy;
(¢) (x) € (y) or (y) < ().

Proof. (a) = (¢): If x = y™ for some m € N, then = € (y), hence () C (y). The case
y = ™ is symmetric.

(¢) = (b): If (z) C (y), then |(z)| | [(y)], i.e. ord(x) | ord(y). The other containment is
symmetric.

(b) = (a): Assume d; | dy. In C,, there is a unique subgroup of every order dividing n
9, 10]. Let H, = (y), so |Hy| = d,. Since d, | dy, the subgroup H, has a unique subgroup
of order d,, namely (y%/%). But (z) is also a subgroup of order d,, so by uniqueness

(&) = (y™/%) C (y).

Hence x € (y), so x = y"™ for some m € N, giving adjacency. The case d, | d; is symmetric.

Corollary 1 (Completeness criterion). P(C),) is complete if and only if n is a prime
power.

Proof. If n = p®, then the divisors of n form a chain under divisibility, so any two
non-identity elements have comparable orders and are adjacent by Theorem 1; since the
identity is adjacent to all vertices, the graph is complete.

If n has two distinct prime divisors p # ¢, choose = of order p and y of order q. Then
p1qand q1p, so xz,y are not adjacent by Theorem 1; hence the graph is not complete.

4.2. Clique number as a totient-weighted chain maximum
Definition 1 (Weighted chain functional). Define
A(n) := max { Z o(d) : CC{d:d|n} is a chain under divisz'bility}.
deC

Theorem 2 (Clique number). For G = C,,
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Proof. Lower bound. Fix a divisor chain C = {d; | da | --- | di}. For each d;, let
Vg, = {z € Cp, : ord(x) = d;}, so |Vy,| = ¢(d;). If x € Vy, and y € Vg, with i < j, then
d; | dj, hence x and y are adjacent by Theorem 1. Also, within a fixed Vj,, any two
elements generate the same unique subgroup of order d; and are powers of each other.
Thus Ule Vg, is a clique of size Zle ©o(d;), so w(P(Cyp)) > A(n).

Upper bound. Let K be a clique in P(C,,) and consider the set of orders appearing:

O(K) = {ord(z) : x € K}.

If O(K) contained two incomparable divisors d, e, then choosing x,y € K with orders d, e
would contradict Theorem 1. Hence O(K) is a chain. For each d € O(K), at most ¢(d)
vertices of order d can occur. Therefore

K< Y o(d) < AM),

deO(K)

so w(P(Cy)) < A(n).

4.3. Chromatic number and perfectness (fully expanded)

Definition 2 (Comparability graph and replication). Let (P, <) be a poset. Its compara-
bility graph Comp(P) has vertex set P and an edge between distinct u,v € P iff u < v or
v < Uu.

Given a graph T' and a vertez v € V(I'), replicating v means replacing v by a clique
K, (for some m > 1) such that every new vertex has exactly the same neighbours outside
the clique as v had in T.

Lemma 1 (Poset model for P(C,,)). Let P be the set of positive divisors of n ordered by
divisibility, and let 'y = Comp(P). Then P(Cy,) is obtained from Iy by replicating each
divisor-vertex d € P into a clique of size p(d).

Proof. Partition C,, into order layers Vy = {x € C,, : ord(z) = d} for d | n. Then
|Val = ¢(d). By Theorem 1, if z € V; and y € V. with d # e, then z is adjacent to y iff
d | e or e | d, matching adjacency of d, e in Comp(P). Within each layer Vg, all vertices
are pairwise adjacent, so each Vj is a clique. This is exactly the replication construction.

Lemma 2 (Comparability graphs are perfect). If P is a finite poset, then Comp(P) is a
perfect graph.

Proof. For any induced subposet @ C P, the induced subgraph Comp(P)[Q] is
Comp(Q). A clique in Comp(Q) is exactly a chain in @, so w(Comp(Q)) equals the
maximum chain size. A proper coloring of Comp(Q) partitions () into antichains, and
conversely any antichain partition gives a coloring. By Mirsky’s theorem (dual Dilworth),
the minimum number of antichains in a partition equals the maximum chain size. Hence
X(Comp(Q)) = w(Comp(Q)) for every induced subgraph, i.e. Comp(P) is perfect; see [11,
Ch. 7].
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Lemma 3 (Replication preserves perfectness (Lovdsz)). If ' is perfect and T is obtained
from T by replicating a vertex, then I is perfect.

Proof. This is the replication lemma of Lovasz [12]; see also [11, Ch. 6].

Theorem 3 (Chromatic number). For G = Cy,

Proof. Let P be the divisor poset of n and I'j = Comp(P). By Lemma 2, Ty is
perfect. By Lemma 1, P(C,,) is obtained from I'y by a sequence of vertex replications.
By Lemma 3, perfectness is preserved under each replication, hence P(C,) is perfect.

Therefore x(P(Cy)) = w(P(Cy)). Finally, Theorem 2 gives w(P(Cy)) = A(n).

4.4. Independence number and divisor poset width

Let W (n) denote the width (maximum antichain size) of the divisor poset of n.

Theorem 4 (Independence number). For G = C,,

Moreover, if n = szlp?i then W (n) equals the mazimum coefficient of

t
Fo(o) = [J0+ a4 42%),
1=1

a standard consequence of Sperner theory for products of chains [13, Ch. 3].

Proof. By Theorem 1, two distinct vertices z,y € C,, are adjacent iff ord(z) and ord(y)
are comparable by divisibility; in particular, vertices of the same order are adjacent. Hence
an independent set can contain at most one vertex from each order layer, and the set of
orders appearing must be an antichain. Therefore a(P(Cy,)) < W (n).

Conversely, let A be an antichain of divisors of size W (n). For each d € A choose an
element x4 € C, of order d. If d # e are in A, then d and e are incomparable, so x4 and
x. are non-adjacent by Theorem 1. Thus {z4: d € A} is an independent set of size W (n),
proving a(P(Cy)) > W(n).

4.5. Degrees and edges
Proposition 1 (Edge count in P(C},)).

dle, d<e
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Proof. For each d | n, the ¢(d) vertices of order d form a clique, contributing (‘p(zd))
edges. If d < e with d | e, then every vertex of order d is adjacent to every vertex of order
e by Theorem 1, contributing ¢(d)p(e) edges between the layers. Summing over all such
pairs gives the formula.

Proposition 2 (Degrees in P(C,,)). If x € C,, has order d, then

deg(@) = (Dow(e)) =1+ Y wle)=@=1D+ > ¢le).

eld eln eln

dle, e#d dle,e#£d
The identity has degree n — 1.

Proof. A vertex y is adjacent to z iff ord(y) divides ord(z) or is a multiple of it
(Theorem 1). The subgroup (x) has size d, contributing exactly d — 1 neighbours other than
x itself. For each divisor e | n with d | e and e # d, every element of order e is adjacent to
x, contributing ¢(e) neighbours. Summing gives the formula. For = = e, the identity is
adjacent to every non-identity element, so deg(e) =n — 1.

5. Power graphs of dihedral groups

5.1. Structure and immediate consequences

Theorem 5 (Structural decomposition of P(Da,)). Let G = Da, = (r,s | " = s? =
e, srs = r~ 1), with rotation subgroup R = (r) = C,, and reflections R = {sr¥ : 0 < k < n}.
Then:

(a) The induced subgraph on R is isomorphic to P(Cy).
(b) Each reflection has degree 1, adjacent only to the identity e.

(¢) There are no edges between any reflection and any nonidentity rotation, nor between
two distinct reflections.

Equivalently,
P(Day) = <77(C'n)> with n pendant leaves attached at e.

Proof. (a) Any power of a rotation is a rotation, and the power relation among rotations
agrees with the power relation in C), = (r), so the induced subgraph on R is P(C,,).

(b) If z = sr* is a reflection, then 22 = e and (x) = {e,2}. Thus z is adjacent to e
(since e = #?) and to no other vertex, so deg(z) = 1.

(c) If y € R\ {e} is a nonidentity rotation, then every positive power of y lies in R, so
it cannot equal a reflection. Conversely, the only positive powers of a reflection are x and
e, so a nonidentity rotation cannot be a power of a reflection. Distinct reflections cannot
be powers of one another because the only possible values of ™ are e or . Hence there
are no such edges.
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Corollary 2. For alln > 2,
w(P(Dan)) = w(P(Cn)) = A(n),  Xx(P(D2n)) = x(P(Cn)) = A(n).
Moreover, diam(P(D2y,)) = 2 (and rad(P(Day,)) = 1).

Proof. By Theorem 5, reflections have degree 1 and cannot appear in any clique of size
> 3, so maximum cliques lie in R and w(P(Da,,)) = w(P(Cy)) = A(n) by Theorem 2.

For chromatic number, color R optimally with A(n) colors using Theorem 3. Each
reflection is adjacent only to e, so each reflection may be colored with any color different
from the color of e. Thus no extra colors are needed and x(P(D2,)) = A(n).

Since e is adjacent to all vertices, rad = 1 and diam < 2. For n > 2 there exist two
distinct reflections, which are not adjacent; their distance is 2 via e, hence diam = 2.

5.2. Independence number (expanded proof)

Let W'(n) denote the width of the divisor poset of n with the minimum element 1
removed.

Theorem 6. For G = Dy, with n > 2,
a(P(Day)) = n+ W' (n).

Proof. Lower bound. By Theorem 5, the set of all n reflections is independent, and
reflections have no edges to nonidentity rotations. Let A be an antichain in the divisor
poset with 1 removed, of size W’(n). For each d € A choose a rotation x4 € R of order
d. Since A is an antichain, the chosen rotations are pairwise non-adjacent (by Theorem 1
inside R = (). Hence we obtain an independent set of size n + W'(n).

Upper bound. Let S be any independent set. Since e is adjacent to all vertices, any
maximum independent set omits e (for n > 2 there are independent sets of size 2). Then
S splits into reflections and nonidentity rotations. The reflection part has size at most n.
The rotation part can contain at most one element from each order layer, and the set of
orders must be an antichain in the divisor poset with 1 removed. Hence the rotation part
has size at most W’(n). Therefore |S| < n + W'(n), giving equality.

5.3. Edges, triangles, and degrees
Proposition 3. For G = Dy,

|E(P(Day))| = |E(P(Cp))|+n, and every triangle of P(Day,) lies in the rotation part R.

Proof. By Theorem 5, each reflection contributes exactly one edge to e, and there
are no other edges involving reflections. Thus the edge set is the disjoint union of the
cyclic-part edges and these n leaf-edges. Since reflections have degree 1, no triangle can
involve a reflection, so every triangle lies in R.
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Proposition 4. In P(Da,), the identity has degree 2n — 1, each reflection has degree 1,
and each nonidentity rotation has the same degree as in P(Cy) given by Proposition 2.

Proof. Immediate from Theorem 5.

6. Examples
Example 1. Let n = 12 = 22 . 3. Divisors and totients:
1(1), 2(1), 3(2), 4(2), 6(2), 12(4).
A chain 13612 gives > p(d)=1+2+2+4=9, so
w(P(C12)) = x(P(C12)) =9

by Theorems 2 and 3. An antichain of mazimum size is {3,4,6}, hence a(P(Ci2)) =3 by
Theorem 4. For the dihedral group,

a(P(Dag)) =12+ W'(12) = 15

by Theorem 6.

7. Algorithmic notes: computing A(n) and W(n)
Let n = HE:I ;-

e Computing W (n) and W'(n). The coefficients of

Fafw) = [J( 240 a)
i=1

can be computed by repeated convolution (dynamic programming). Then W (n) is the
maximum coefficient of F,,(z). Since 1 is comparable with every divisor, no antichain
of size > 2 can contain 1, so for every n > 2 one has W'(n) = W(n).

e Computing A(n). View A(n) as a maximum-weight chain problem in the divisor
poset. Let w(d) := ¢(d). Define, for each divisor d | n,

DP(d) := w(d) + max{DP(e) : e | d, e < d},

with the convention that the maximum over the empty set is 0 (so DP(1) = w(1) = 1).
Then A(n) = maxg), DP(d).



S. Aljohani, J. Nisar, R. A. Padder / Eur. J. Pure Appl. Math, 19 (1) (2026), 7517 12 of 13

8. Conclusion and open problems

We presented an explicit treatment of power graphs for cyclic and dihedral groups,

emphasizing (i) the divisor-poset structure behind P(Cy,), and (ii) the pendant-leaf decom-
position of P(Da,,). This yielded exact formulas for w, y, a, degrees, and edge counts, and
reduced several dihedral invariants to the cyclic case.

Open directions.

e Spectral parameters (eigenvalues, energy) of P(Da,,) using the leaf-attachment decom-

position.
Automorphism groups Aut(P(C,,)) and Aut(P(D2y,)), in the spirit of [3, 14].

More explicit descriptions (or closed forms) for optimal chains achieving A(n) from
the prime factorization of n.
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