EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 3, No. 4, 2010, 686-694 ISSN 1307-5543 – www.ejpam.com

On the Structure of Commutative Rings with $p_1^{k_1} \cdots p_n^{k_n}$ $(1 \le k_i \le 7)$ Zero-Divisors II

M. Behboodi 1,2,* and R. Beyranvand 3

Abstract. In this paper, we determine the structure of nonlocal commutative rings with p^6 zero-divisors and characterize the structure of nonlocal commutative rings with p^7 zero-divisors. Also, the structure and classification up to isomorphism all commutative rings with $p_1^{k_1} \dots p_n^{k_n}$ zero-divisors, where n is a positive integer, p_i 's are distinct prime number and $1 \le k_i \le 4$, are determined.

2000 Mathematics Subject Classifications: 16B99; 13A99; 68R10

Key Words and Phrases: Finite ring, Zero-divisor, Local ring

1. Introduction

The present paper is a sequel to [2] and so the notations introduced in Introduction of [2] will remain in force. In particular, all rings are associative rings with identity elements, J(R) denotes the jacobson radical of R, Z(R) denotes the set of all zero-divisors of R and for any finite subset Y of R, we denote |Y| for the cardinality of Y. Also, F_q is the finite field of order q, F_q^* is the group of nonzero elements of F_q and for a prime number P, P_m is a set of coset representation of P_q^* in P_p^* , P_m^* in P_p^* in P_p^*

In [2] the structure and classification up to isomorphism all rings with $p_1^{k_1} \dots p_s^{k_s}$ zero-divisors, where s is a positive integer, p_i 's are distinct prime number and $1 \le k_i \le 3$ were determined. Also we determined the structure of nonlocal rings with p^k zero-divisors where k=4 or 5. In the paper we develop these results. In fact the structure and classification up to isomorphism all rings with $p_1^{k_1}p_2^{k_2}\dots p_s^{k_s}$ zero-divisors, where s is a positive integer, p_i 's are distinct prime number and $1 \le k_i \le 4$ are determined. Also we determine the structure of nonlocal rings with p^6 zero-divisors and characterize the structure of nonlocal rings with p^7 zero-divisors.

Email addresses: mbehbood@cc.iut.ac.ir (M. Behboodi), beyranvand.r@lu.ac.ir (R. Beyranvand)

¹ Department of Mathematical Science, Isfahan University of Technology, Isfahan, Iran

² School of Mathematics, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

³ Faculty of Science, Department of Mathematics, Lorestan University, Khorramabad, Iran

^{*}Corresponding author.

2. On Rings with p^k Zero-divisors

We recall the following facts that we will use them in the paper:

- (i) An Artinian commutative ring R is called *completely primary* if R/J(R) is a field. One can easily see that an Artinian commutative ring R is completely primary if and only if Z(R) is an ideal of R, if and only if R is a local ring.
- (ii) Let R_i $(1 \le i \le t)$ be a nonzero finite commutative ring with m_i elements and n_i zero-divisors. Then by [6, Theorem 2], the ring $R_1 \times \ldots \times R_t$ has $m_1 m_2 \ldots m_t (m_1 n_1)(m_2 n_2) \ldots (m_t n_t)$ zero-divisors.
- (iii) Every finite commutative ring is uniquely expressible as a direct sum of completely primary (local) rings (see for example [7, p.95]).

We need the following two lemmas which are crucial in our investigation.

Lemma 1. [8, Theorem 2] Let R be a finite completely primary ring. Then

- 1. Z(R) = J(R);
- 2. $|Z(R)| = p^{(n-1)r}$ and $|R| = p^{nr}$ for some prime number p, and some positive integers n, r;
- 3. $Z(R)^n = 0$;
- 4. $char(R) = p^k$ for some integer k with $1 \le k \le n$;
- 5. $R/J(R) \cong F_q$, where $q = p^r$.

Lemma 2. [2, Theorem 2] Let R be a commutative ring such that $|Z(R)| = p^k$ for some prime number p and a positive number k. Then either

- (i) R is local,
- (ii) R is reduced or
- (iii) $k \geq 3$ and $R \cong R_1 \times \ldots \times R_s \times F_{q_1} \times \ldots \times F_{q_t}$ where s and t are positive integers, each F_{q_i} is a field, and where each R_i is a commutative finite local ring with $|Z(R_i)| = p^{t_i}$, $|R_i| = p^{k_i}$ for some positive integers k_i and t_i with $1 \leq \sum_{i=1}^s t_i \leq \sum_{i=1}^s k_i s \leq k s 1$ such that

$$p^{k-\sum_{i=1}^{s} t_i} = q_1 \dots q_t p^{\sum_{i=1}^{s} (k_i - t_i)} - (q_1 - 1) \dots (q_t - 1) \prod_{i=1}^{s} (p^{k_i - t_i} - 1).$$
 (1)

Consequently, in the latter case, $q_i \equiv 1$ (p) and for each $i=1,\ldots,s$, $t_i \leq k-2$. Moreover, if $t_j=k-2$ for some $j \in \{1,\ldots,s\}$, then s=t=1, i.e., $R \cong R_1 \times F_q$ where $|Z(R_1)|=p^{k-2}$ and so $p^2=p+q-1$.

Also we need the following construction [3, p.5071].

Construction A. Let R_0 be the Galois ring $GR(p^{2r}, p^2)$ or $GR(p^{3r}, p^3)$. Let s, d, t, λ be integers with either $1 \le t \le s^2$, $1 \le 1+t \le s^2$ or $1 \le d+t \le s^2$ if $\operatorname{char}(R_0) = p^2$ or $1 \le 1+d+t \le 1+s^2$ if $\operatorname{char}(R_0) = p^3$, and $\lambda \ge 0$. Let V, W be R_0/pR_0 -spaces which when considered as R_0 -modules have generating sets $\{v_1, \ldots, v_{\lambda}\}$ and $\{w_1, \ldots, w_t\}$ respectively. Let U be an R_0 -module with an R_0 -modules generating set $\{u_1, \ldots, u_s\}$; and suppose that $d \ge 0$ of the u_i are such that $pu_i \ne 0$. Since R_0 is commutative, we can think of them as left and right R_0 -module.

Let (a_{ij}^l) , for $l=0,1,\ldots,t,t+1$ or d+t, be $s\times s$ matrices with entries in R_0/pR_0 if $\operatorname{char}(R_0)=p^2$ or $l=0,1,\ldots,d+t$ be $(1+s)\times(1+s)$ matrices with entries in R_0/pR_0 if $\operatorname{char}(R_0)=p^3$.

Consider the additive group direct sum $R = R_0 \oplus U \oplus V \oplus W$ and define a multiplication on R by

 $(\alpha_0, \sum_{i=1}^s \alpha_i u_i, \sum_{j=1}^\lambda \beta_j v_j, \sum_{k=1}^t \gamma_k w_k).(\alpha_0', \sum_{i=1}^s \alpha_i' u_i, \sum_{j=1}^\lambda \beta_j' v_j, \sum_{k=1}^t \gamma_k' w_k) = \\ (\alpha_0 \alpha_0' + p^f \sum_{i,j=1}^s a_{ij}^0 [\alpha_i \alpha_j' + pR_0], \sum_{i=1}^s [\alpha_0 \alpha_i' + \alpha_i \alpha_0' + p \sum_{i,j=1}^s a_{ij}^i [\alpha_i \alpha_j' + pR_0]] u_i, \sum_{j=1}^\lambda [(\alpha_0 + pR_0)\beta_j' + \beta_j(\alpha_0' + pR_0)] v_j, \sum_{k=1}^t [(\alpha_0 + pR_0)\gamma_k' + \gamma_k(\alpha_0' + pR_0) + \sum_{i,j=1}^s a_{ij}^{d+k} [\alpha_i \alpha_j' + pR_0]] w_k) \\ \text{where } f = 1 \text{ or 2, depending on whether } char(R) = p^2 \text{ or } p^3. \text{ Then by [3, Theorem 6.1], this } \\ \text{multiplication turns } R \text{ into a ring and any local ring with } Z(R)^3 = 0, Z(R)^2 \neq 0 \text{ of characteristic } p^2 \text{ or } p^3, \text{ is isomorphic to one given by construction A.}$

Proposition 1. Let R be a commutative ring with $|Z(R)| = p^4$ and $|R| = p^6$ where p is a prime number. Then R is isomorphic to one of the rings $GR(p^6,p^3)$, $F_{p^2} \oplus F_{p^2} \oplus F_{p^2}$ with multiplication $(r_0,r_1,r_2)(s_0,s_1,s_2)=(r_0s_0,r_0s_1+r_1s_0,r_0s_2+r_2s_0)$, $S \oplus F$ with multiplication $(r_0,r_1)(s_0,s_1)=(r_0s_0,r_0s_1+r_1s_0)$, where $S=GR(p^4,p^2)$ and F=S/pS, $F_{p^2} \oplus F_{p^2} \oplus F_{p^2}$ with multiplication $(\alpha_0,\alpha,\gamma)(\alpha'_0,\alpha',\gamma')=(\alpha_0\alpha'_0,\alpha_0\alpha'+\alpha\alpha'_0,\alpha_0\gamma'+\gamma\alpha'_0+\alpha\alpha')$ or $R_0 \oplus R_0/pR_0$ with multiplication $(\alpha_0,\alpha+pR_0)(\alpha'_0,\alpha'+pR_0)=(\alpha_0\alpha'_0+\alpha\alpha'_p,\alpha_0\alpha'+\alpha\alpha'_0+pR_0)$ where $R_0=GR(p^4,p^2)$.

Proof. Since *R* is a ring with $|Z(R)| = p^4$ and $|R| = p^6$, by Lemma 1, $Z(R)^3 = 0$. Thus we consider the following cases.

Case 1: $Z(R)^2 = 0$ i.e., R is a ring in which the multiplication of any two zero-divisors is zero. Then by [1, Theorem 1], R is isomorphic to one of the rings $S \oplus F^k$, where S is either the field of p^r elements or the Galois ring $GR(p^{2r}, p^2)$ and F = S/pS with the multiplication

$$(r_0, r_1, \dots, r_k)(s_0, s_1, \dots, s_k) = (r_0s_0, r_0s_1 + r_1s_0, \dots, r_0s_k + r_ks_0)$$

for some positive integers r and k.

Now since $|Z(R)| = p^4$ and $|R| = p^6$, we can conclude that $S = F_{p^2}$ and k = 2 or $S = GR(p^4, p^2)$ and k = 1. Thus R is isomorphic to one of the rings $F_{p^2} \oplus F_{p^2} \oplus F_{p^2}$ with $(r_0, r_1, r_2)(s_0, s_1, s_2) = (r_0s_0, r_0s_1 + r_1s_0, r_0s_2 + r_2s_0)$ or $S \oplus F$ with $(r_0, r_1)(s_0, s_1) = (r_0s_0, r_0s_1 + r_1s_0)$, where $S = GR(p^4, p^2)$ and F = S/pS.

Case 2: $Z(R)^2 \neq 0$. If char(R) = p, then by [3, Theorem 4.1], any commutative local ring of characteristic p in which the multiplication of any two zero-divisors is zero, is isomor-

phic to one of the rings $F \oplus U \oplus V \oplus W$ with multiplication

$$(\alpha_{0}, \sum_{i=1}^{s} \alpha_{i} u_{i}, \sum_{j=1}^{\lambda} \beta_{j} v_{j}, \sum_{k=1}^{t} \gamma_{k} w_{k})(\alpha'_{0}, \sum_{i=1}^{s} \alpha'_{i} u_{i}, \sum_{j=1}^{\lambda} \beta'_{j} v_{j}, \sum_{k=1}^{t} \gamma'_{k} w_{k})$$

$$= (\alpha_{0} \alpha'_{0}, \sum_{i=1}^{s} [\alpha_{0} \alpha'_{i} + \alpha_{i} \alpha'_{0}] u_{i}, \sum_{j=1}^{\lambda} [\alpha_{0} \beta'_{j} + \beta_{j} \alpha'_{0}] v_{j}, \sum_{k=1}^{t} [\alpha_{0} \gamma'_{k} + \gamma_{k} \alpha'_{0} + \sum_{i,j=1}^{s} \alpha^{k}_{i,j} \alpha_{i} \alpha'_{j}] w_{k})$$

where F is the field of order r and U, V, W are s, λ, t -dimensional F-spaces respectively, for some integers s, λ, t with $\lambda \ge 0$ and $1 \le t \le s^2$, where $\{u_i\}, \{v_i\}$ and $\{w_i\}$ are bases for U, V and W respectively, and $(a_{i,i}^k)$ $1 \le k \le t$ are t matrices of size $s \times s$ with entries in *F*. Since $|R| = p^6$, we can conclude that t = s = 1 and $\lambda = 0$. On the other hand by [3, Corollary 5.2], we can put $a_{11}^1=1$. Thus $R\cong F_{p^2}\oplus F_{p^2}\oplus F_{p^2}$ with multiplication $(\alpha_0,\alpha,\gamma)(\alpha_0',\alpha',\gamma')=(\alpha_0\alpha_0',\alpha_0\alpha'+\alpha\alpha_0',\alpha_0\gamma'+\gamma\alpha_0'+\alpha\alpha')$. Now suppose that char $(R)=p^2$ or p^3 . Since $|R|=p^6$ and $|R/J(R)|=p^2$, by construction

A we conclude that s=1 and $t=\lambda=0$ if $\operatorname{char}(R)=p^2$ and $s=t=\lambda=0$ if $char(R) = p^3$. Also by [3, Lemma 7.1], we can put $a_{11}^0 = 1$ and so the following rings is obtained.

If char(R) = p^2 , then $R \cong R_0 \oplus R_0/pR_0$ with multiplication $(\alpha_0, \alpha + pR_0).(\alpha'_0, \alpha' + pR_0) =$ $(\alpha_0 \alpha'_0 + \alpha \alpha' p, \alpha_0 \alpha' + \alpha \alpha'_0 + pR_0)$, where $R_0 = GR(p^4, p^2)$ and if char(R) = p^3 , then $R \cong GR(p^6, p^3).$

Proposition 2. Let R be a commutative ring with $|Z(R)| = p^4$ and $|R| = p^5$ where p is a prime number. Then R is isomorphic to one of the rings \mathbb{Z}_{p^5} , $F_p[x]/(x^5)$, $F_p[x,y]/(x^4,xy,y^2)$, $F_p[x,y]/(x^4,xy,y^2-x^3), \ \mathbb{Z}_p[x,y,z,t]/(x,y,z,t)^2, \ \mathbb{Z}_{p^2}[x]/(px,x^4-ap) \ where \ a \in \Sigma^0_4$ $\mathbb{Z}_{p^2}[x]/(px^2, x^3 - bp)$ where $b \in \Sigma_3$ and $p \neq 3$, $\mathbb{Z}_9[x]/(3x^2, x^3 - 3 - 3bx)$ where $b \in \Sigma_3$ $\{-1,0,1\}, \mathbb{Z}_{p^2}[x]/(px^2,x^3-apx) \text{ where } a \in \Sigma_2^0, \mathbb{Z}_{p^2}[x,y,z]/(p,x,y,z)^2, \mathbb{Z}_{p^3}[x]/(p^2x,x^2-apx) \text{ and } a \in \Sigma_2^0, \mathbb{Z}_{p^2}[x,y,z]/(p,x,y,z)^2 = 0$ ap) where $a \in \Sigma_2$ and $p \neq 2$, $\mathbb{Z}_8[x]/(4x, x^2 - 2a - 2bx)$ where $(a, b) \in \{(1, 0), (1, 1), (-1, 1)\}$, $\mathbb{Z}_{p^3}[x]/(px, x^3 - ap^2)$ where $a \in \Sigma_3^0$, $\mathbb{Z}_{p^3}[x]/(p^2x, x^2 - ap^2)$ where $a \in \Sigma_2^0$ and $p \neq 2$, $\mathbb{Z}_{8}[x]/(4x, x^{2}-4a-2bx)$ where $(a,b) \in \{(0,0),(0,1),(1,1)\}, \mathbb{Z}_{p^{4}}[x]/(px, x^{2}-ap^{3})$ where $a \in \Sigma_2^0$

$$\langle 1, x_1, x_2, y_1, y_2; \ p1 = 0, \ x_1^2 = y_1, \ x_2^2 = 0, \ x_1x_2 = y_2, \ x_iy_i = y_iy_j = 0 \rangle,$$

 $\langle 1, x_1, x_2, y_1, y_2; \ p1 = 0, \ x_1^2 = x_2^2 = y_1, \ x_1x_2 = y_2, \ x_iy_i = y_iy_j = 0 \rangle$ where $p \neq 2$,
 $\langle 1, x_1, x_2, y_1, y_2; \ p1 = 0, \ x_1^2 = y_1, \ x_2^2 = \xi y_1, \ x_1x_2 = y_2, \ x_iy_i = y_iy_j = 0 \rangle$ where $p \neq 2$ and ξ is a non-square in F_p ,

$$\langle 1, x_1, x_2, y_1, y_2; 2.1 = 0, x_1^2 = y_1, x_2^2 = y_2, x_1x_2 = y_2, x_iy_i = y_iy_j = 0 \rangle$$
, $\langle 1, x_1, x_2, y_1, y_2; 2.1 = 0, x_1^2 = y_1, x_2^2 = y_1 + y_2, x_1x_2 = y_2, x_iy_i = y_iy_j = 0 \rangle$, $\langle 1, x_1, x_2, x_3, y; p1 = 0, x_1^2 = y, x_2^2 = x_3^2 = x_ix_j = x_iy = y^2 = 0, \text{ for } i \neq j \rangle$, $\langle 1, x_1, x_2, x_3, y; p1 = 0, x_1^2 = x_2^2 = y, x_3^2 = x_ix_j = x_iy = y^2 = 0, \text{ for } i \neq j \rangle$, $\langle 1, x_1, x_2, x_3, y; p1 = 0, x_i^2 = y, x_ix_j = x_iy = y^2 = 0, \text{ for } i \neq j \rangle$, $\langle 1, x_1, x_2, x_3, y; p1 = 0, x_1^2 = y, x_2^2 = \epsilon y, x_3^2 = x_ix_j = x_iy = y^2 = 0, \text{ for } i \neq j \rangle$ where

$$\langle 1, x_1, x_2, x_3, y; p1 = 0, x_1^2 = y, x_2^2 = x_3^2 = x_i x_j = x_i y = y^2 = 0, \text{ for } i \neq j \rangle$$

$$\langle 1, x_1, x_2, x_3, y; p1 = 0, x_1^2 = x_2^2 = y, x_3^2 = x_i x_j = x_i y = y^2 = 0, \text{ for } i \neq j \rangle$$

 $p \neq 2$ and ϵ is a non-square in F_p ,

```
\langle 1, x_1, x_2, x_3, y; \ 2.1 = 0, \ {x_i}^2 = x_1 x_2 = x_1 x_3 = x_i y = y^2 = 0, \ x_2 x_3 = y \rangle
\langle 1, x, y, z, p; p^2 1 = 0, x^2 = \alpha z, xz = p, y^2 = \delta p, z^2 = xy = yz = 0 \rangle where \alpha \in \Sigma_3 and
 \delta \in \Sigma_2^0
\langle 1, x, y; p^2 1 = p^2 x = py = 0, x^2 = \alpha p, y^2 = \delta px, xy = 0 \rangle where p \neq 2, \alpha \in \Sigma_2 and \delta = 0
or \alpha \in \Sigma_4 and \delta = 1,
 \langle 1, x, y; 4.1 = 4x = 2y = 0, x^2 = 2, y^2 = xy = 0 \rangle
\langle 1, x, y; 4.1 = 4x = 2y = 0, x^2 = 2 + 2x, y^2 = xy = 0 \rangle
\langle 1, x, y; 4.1 = 4x = 2y = 0, x^2 = 2, y^2 = 2x, xy = 0 \rangle
\langle 1, x_1, x_2, x_3, p; \ p^2 1 = p x_i = 0, \ x_1^2 = v p, \ x_2^2 = x_3^2 = 0, \ x_i x_j = 0 \ for \ i \neq j \rangle where p \neq 2, \epsilon
is a non-square in F_p and v \in \{1, \epsilon\},
(1, x_1, x_2, x_3, p; p^2)^p = px_i = 0, x_1^2 = 1, x_2^2 = vp, x_3^2 = 0, x_i x_i = 0 \text{ for } i \neq j \text{ where } p \neq 2,
\epsilon is a non-square in F_p and v \in \{1, \epsilon\},
\langle 1, x_1, x_2, x_3, p; p^2 1 = p x_i = 0, x_1^2 = x_2^2 = 1, x_3^2 = v p, x_i x_j = 0 \text{ for } i \neq j \rangle where p \neq 2, \epsilon
is a non-square in F_p and v \in \{1, \epsilon\},
so whot-square in F_p and V \in \{1, \epsilon\}, \langle 1, x_1, x_2, x_3; 4.1 = 2x_i = 0, x_1^2 = 2, x_2^2 = x_3^2 = 0, x_i x_j = 0 \text{ for } i \neq j \rangle, \langle 1, x_1, x_2, x_3; 4.1 = 2x_i = 0, x_1^2 = 1, x_2^2 = 2, x_3^2 = 0, x_i x_j = 0 \text{ for } i \neq j \rangle, \langle 1, x_1, x_2, x_3; 4.1 = 2x_i = 0, x_1^2 = x_2^2 = 1, x_3^2 = 2, x_i x_j = 0 \text{ for } i \neq j \rangle, \langle 1, x_1, x_2, y; p^2 1 = px_i = py = 0, x_1^2 = 1, x_2^2 = 0, x_1 x_2 = x_1 y = x_2 y = 0 \rangle, \langle 1, x_1, x_2, y; p^2 1 = px_i = py = 0, x_1^2 = 1, x_2^2 = y, x_1 x_2 = x_1 y = x_2 y = 0 \rangle,
(1, x_1, x_2, y; p^2 1 = px_i = py = 0, x_1^2 = 1, x_2^2 = \xi y, x_1 x_2 = x_1 y = x_2 y = 0) where p \neq 2,
\xi is a non-square in F_p,
\langle 1, x_1, x_2, y; 4.1 = 2x_i = 2y = 0, x_1^2 = x_2^2 = x_1y = x_2y = 0, x_1x_2 = y \rangle
(1, x, y, p; p^2 1 = p^2 x = py = 0, x^2 = 0, y^2 = \delta px, xy = 0) where \delta \in \{0, 1\} and p \neq 2,
\langle 1, x, y; 4.1 = 4x = 2y = 0, x^2 = \alpha 2x, y^2 = \delta 2x, xy = 0 \rangle where (\alpha, \delta) \in \{(0, 0), (1, 0), (1, 1)\},
\langle 1, x_1, x_2; p^3 1 = px_i = 0, x_1^2 = x_2^2 = 0, x_1 x_2 = 0 \rangle,

\langle 1, x_1, x_2; p^3 1 = px_i = 0, x_1^2 = p^2, x_2^2 = x_1 x_2 = 0 \rangle,
\langle 1, x_1, x_2; p^3 1 = px_i = 0, x_1^2 = \epsilon p^2, x_2^2 = x_1 x_2 = 0 \rangle where p \neq 2,
\langle 1, x_1, x_2; p^3 1 = p x_i = 0, x_1^2 = x_2^2 = p^2, x_1 x_2 = 0 \rangle, \langle 1, x_1, x_2; p^3 1 = p x_i = 0, x_1^2 = x_2^2 = p^2, x_1 x_2 = 0 \rangle where p \neq 2 and \epsilon is a non-square
\langle 1, x_1, x_2; 8.1 = 2x_i = 0, x_1^2 = x_2^2 = 0, x_1x_2 = 4 \rangle or
one of the rings given in full in [9]. The number of these rings is 10 or 6 according to whether
p \neq 2 \text{ or } p = 2.
```

Proof. By using [5] and [9] one can check that *R* is isomorphic to one of the above rings.

Theorem 1. Let R be a ring with $|Z(R)| = p^4$, where p is a prime number. Then R is isomorphic to one of the rings described in Proposition 1, Proposition 2, the Galois ring $GR(p^8, p^2)$, $F_{p^4}[x]/(x^2)$, $\mathbb{Z}_{p^2} \times F_{q_1} \times \ldots \times F_{q_t}$, $\mathbb{Z}_p[x]/(x^2) \times F_{q_1} \times \ldots \times F_{q_t}$ where $p^3 = p^2q_1 \ldots q_t - (p^2 - p)(q_1 - 1) \ldots (q_t - 1)$, $F_{q_1} \times \ldots \times F_{q_t}$ where $p^4 = q_1q_2 \ldots q_t - (q_1 - 1)(q_2 - 1) \ldots (q_t - 1)$ or $R_1 \times F_q$ with $p^2 = p + q - 1$ where R_1 is isomorphic to one of the rings \mathbb{Z}_{p^3} , $F_p[x,y]/(x,y)^2$, $F_p[x]/(x^3)$ or $\mathbb{Z}_{p^2}[x]/(px,x^2 - \varepsilon p)$ where $\varepsilon \in \Sigma_2^0$.

Proof. Suppose that R is a local ring. Then by Lemma 1, $|R| = p^5$, p^6 or p^8 . If $|R| = p^5$ or p^6 , then R is isomorphic to one of the rings described in Proposition 1 or Proposition 2. If $|R| = p^8$, then by [8, Theorem 12], R is isomorphic to the Galois ring $GR(p^8, p^2)$ or $F_{p^4}[x]/(x^2)$. Now suppose R is a nonlocal ring. If R is reduced, then we are down. Otherwise by Lemma 2, $1 \le \sum_{i=1}^s t_i \le 2$ and hence $1 \le s \le 2$. Thus we proceed by cases.

- Case 1: s=1. Then $t_1=1$ or 2. If $t_1=1$, then $R\cong R_1\times F_{q_1}\times\ldots\times F_{q_t}$, where R_1 is a local ring of order p^2 with p zero-divisors. By [4, p.687], R_1 is isomorphic to \mathbb{Z}_{p^2} or $\mathbb{Z}_p[x]/(x^2)$. If $t_1=2$, then by Lemma 2, $R\cong R_1\times F_q$, where R_1 is a local ring of order p^3 with p^2 zero-divisors and $p^2=p+q-1$. Moreover by [4, p.687], R_1 is isomorphic to \mathbb{Z}_{p^3} , $F_p[x,y]/(x,y)^2$, $F_p[x]/(x^3)$ or $\mathbb{Z}_{p^2}[x]/(px,x^2-\varepsilon p)$ where $\varepsilon\in\Sigma_2^0$.
- Case 2: s=2, i.e., $t_1=t_2=1$. Then $R\cong R_1\times R_2\times F_{q_1}\times \ldots \times F_{q_t}$, where each R_i is a local ring with $|Z(R_i)|=p$. Now by Lemma 1, $|R_1|=|R_2|=p^2$. If t>1, then clearly $|Z(R)|>p^4$, a contradiction. Therefore t=1 and hence by relation (1) in Lemma 2, p^2 is a divisor of q_1-1 . Thus $q_1>p^2$ and so $|Z(R)|>|Z(R_1)||R_2||F_{q_1}|\geq p^5$, a contradiction.

Corollary 1. Let R be a ring with $|Z(R)| = p_1^{k_1} p_2^{k_2} \dots p_n^{k_n}$, where $n \ge 1$, $1 \le k_i \le 4$ and p_i 's are distinct prime numbers. Then there exist $0 \le s \le \sum_{i=1}^n k_i$ and $t \ge 0$ such that

$$R \cong R_1 \times \ldots \times R_s \times F_{q_1} \times \ldots \times F_{q_t}$$

where F_{q_i} 's are finite fields and each R_i is local ring with $|Z(R_i)| = p_j^{t_j}$ for some p_j $(1 \le j \le n)$ and $1 \le t_j \le k_j$. Consequently, each R_i is isomorphic to one of the local rings described in [2, Theorem 5] or Theorem 1.

Proof. We put

$$R \cong R_1 \times \ldots \times R_s \times F_{q_1} \times \ldots \times F_{q_t}$$

where F_{q_1},\ldots,F_{q_t} are finite fields and each R_i is a commutative finite local ring with identity that is not a field. By Lemma 2, for each i, $|Z(R_i)|=p^k$ for some prime number p and $k\geq 1$ such that p^k is a divisor of |Z(R)| and also $0\leq s\leq \sum_{i=1}^n k_i$. Thus $|Z(R_i)|=p_j^{t_j}$ where $1\leq t_j\leq k_j,\ 1\leq j\leq n$ and $1\leq i\leq s$. Hence for each $1\leq i\leq s,\ t_i=1,2,3$ or 4 and so each R_i is isomorphic to one of the local rings described in [2, Theorem 5] or Theorem 1.

Theorem 2. Let R be a commutative nonlocal ring with $|Z(R)| = p^6$ where p is a prime number. Then R is isomorphic to one of the rings $F_{q_1} \times ... \times F_{q_t}$ with $p^6 = q_1q_2...q_t - (q_1 - 1)(q_2 - 1)...(q_t - 1)$, $\mathbb{Z}_4 \times \mathbb{Z}_4 \times F_5$, $\mathbb{Z}_2[x]/(x^2) \times \mathbb{Z}_4 \times F_5$, $\mathbb{Z}_2[x]/(x^2) \times \mathbb{Z}_2[x]/(x^2) \times F_5$, $R_1 \times F_{q_1} \times ... \times F_{q_t}$, where R_1 is isomorphic to \mathbb{Z}_{p^2} or $\mathbb{Z}_p[x]/(x^2)$ and $p^5 = pq_1q_2...q_t - (p-1)(q_1-1)(q_2-1)...(q_t-1)$, $R_1 \times F_{q_1} \times ... \times F_{q_t}$ where R_1 is isomorphic to one the rings \mathbb{Z}_{p^3} , $F_p[x,y]/(x,y)^2$, $F_p[x]/(x^3)$ or $\mathbb{Z}_{p^2}[x]/(px,x^2-\varepsilon p)$ where $\varepsilon \in \Sigma_2^0$ and $p^4 = pq_1q_2...q_t - (p-1)(q_1-1)(q_2-1)...(q_t-1)$, $R_1 \times F_{q_1} \times ... \times F_{q_t}$, where R_1 is isomorphic to $F_{p^2}[x]/(x^2)$ or $GR(p^4,p^2)$ and $p^4 = p^2q_1q_2...q_t - (p^2-1)(q_1-1)(q_2-1)...(q_t-1)$, $R_1 \times F_{q_1} \times ... \times F_{q_t}$,

where R_1 is isomorphic to one of the local rings of order p^4 described in [2, corollary 3] and $p^3 = pq_1q_2...q_t - (p-1)(q_1-1)(q_2-1)...(q_t-1)$ or $R_1 \times F_q$ where R_1 is isomorphic to one of the rings described in Proposition 2, and $p^2 = p + q - 1$.

Proof. If R is reduced, then we are down. Now suppose that R is not reduced. Then by [2, Theorem 4], either R is isomorphic to $\mathbb{Z}_4 \times \mathbb{Z}_4 \times F_5$, $\mathbb{Z}_2[x]/(x^2) \times \mathbb{Z}_4 \times F_5$, $\mathbb{Z}_2[x]/(x^2) \times \mathbb{Z}_4 \times F_5$, $\mathbb{Z}_2[x]/(x^2) \times \mathbb{Z}_4 \times F_5$, or $R \cong R_1 \times F_{q_1} \times \ldots \times F_{q_t}$, where R_1 is a local ring with $|Z(R_1)| = p^k$ $(1 \le k \le 4)$ and $t \ge 1$. Thus we proceed by cases.

- Case 1: $|Z(R_1)| = p$. Then by [4, p.687], R_1 is isomorphic to \mathbb{Z}_{p^2} or $\mathbb{Z}_p[x]/(x^2)$ and $p^5 = pq_1q_2...q_t (p-1)(q_1-1)(q_2-1)...(q_t-1)$.
- Case 2: $|Z(R_1)| = p^2$. Then by Lemma 1, $|R_1| = p^3$ or p^4 . If $|R_1| = p^3$, then by [4, p.687], R_1 is isomorphic to one the rings \mathbb{Z}_{p^3} , $F_p[x,y]/(x,y)^2$, $F_p[x]/(x^3)$ or $\mathbb{Z}_{p^2}[x]/(px,x^2-\varepsilon p)$ where $\varepsilon \in \Sigma_2^0$ and $p^4 = pq_1q_2 \dots q_t (p-1)(q_1-1)(q_2-1)\dots (q_t-1)$. If $|R_1| = p^4$, then by [8, Theorem 12], R_1 is isomorphic to $F_{p^2}[x]/(x^2)$ or $GR(p^4,p^2)$ and $p^4 = p^2q_1q_2\dots q_t (p^2-1)(q_1-1)(q_2-1)\dots (q_t-1)$.
- Case 3: $|Z(R_1)| = p^3$. Then by Lemma 1, $|R_1| = p^4$ or p^6 . If $|R_1| = p^6$, then $|Z(R)| > |R_1|$ which is impossible. Thus $|R_1| = p^4$ and so R_1 is isomorphic to one of the local rings of order p^4 described in [2, corollary 3] and $p^3 = pq_1q_2...q_t (p-1)(q_1-1)(q_2-1)...(q_t-1)$.
- Case 4: $|Z(R_1)| = p^4$. Then by Lemma 1, $|R_1| = p^5$, p^6 or p^8 . If $|R_1| = p^6$ or p^8 , then $|Z(R)| > |R_1|$ which is impossible. Thus $|R_1| = p^5$ and so R_1 is isomorphic to one of the rings described in Proposition 2. Also by Lemma 2, $R \cong R_1 \times F_q$ and $p^2 = p + q 1$.

Theorem 3. Let R be a commutative nonlocal ring with $|Z(R)| = p^7$ where p is a prime number. Then R is isomorphic to one of the rings $F_{q_1} \times ... \times F_{q_t}$ with $p^7 = q_1 q_2 ... q_t - (q_1 - 1)(q_2 - 1)$ 1)... (q_t-1) , $\mathbb{Z}_4 \times \mathbb{Z}_4 \times F_3 \times F_3$, $\mathbb{Z}_2[x]/(x^2) \times \mathbb{Z}_4 \times F_3 \times F_3$, $\mathbb{Z}_2[x]/(x^2) \times \mathbb{Z}_2[x]/(x^2) \times F_3 \times F_3$, $R_1 \times R_2 \times F_5$ where R_1 is isomorphic to \mathbb{Z}_4 or $\mathbb{Z}_2[x]/(x^2)$ and R_2 is isomorphic to one of the rings \mathbb{Z}_8 , $\mathbb{Z}_2[x,y]/(x,y)^2$, $\mathbb{Z}_2[x]/(x^3)$ or $\mathbb{Z}_4[x]/(2x,x^2-2\varepsilon)$ where $\varepsilon \in \Sigma_2^0$, $R_1 \times R_2 \times F_{q_1} \times \ldots \times F_{q_t}$, where p is an odd prime number, each R_i is isomorphic to \mathbb{Z}_{p^2} or $\mathbb{Z}_p[x]/(x^2)$ and $p^5 = 1$ $p^2q_1q_2...q_t-(p-1)^2(q_1-1)(q_2-1)...(q_t-1), R_1 \times F_{q_1} \times ... \times F_{q_t}$ where R_1 is isomorphic to \mathbb{Z}_{p^2} or $\mathbb{Z}_p[x]/(x^2)$ with $p^6 = pq_1q_2 \dots q_t - (p-1)(q_1-1)(q_2-1) \dots (q_t-1)$, $R_1 \times F_{q_1} \times \dots \times F_{q_t}$ where R_1 is isomorphic to one the rings \mathbb{Z}_{p^3} , $F_p[x,y]/(x,y)^2$, $F_p[x]/(x^3)$ or $\mathbb{Z}_{p^2}[x]/(px,x^2-\varepsilon p)$ where $\varepsilon \in \Sigma_2^0$ with $p^5 = pq_1q_2...q_t - (p-1)(q_1-1)(q_2-1)...(q_t-1)$, $R_1 \times F_{q_1} \times ... \times F_{q_t}$ where $R_1 \cong F_{p^2}[x]/(x^2)$ or $GR(p^4, p^2)$ with $p^5 = p^2 q_1 q_2 \dots q_t - (p^2 - 1)(q_1 - 1)(q_2 - 1) \dots (q_t - 1)$, $R_1 \times F_{q_1} \times ... \times F_{q_t}$ where R_1 is isomorphic to one of the local rings of order p^4 described in [2, Corollary 3] and $p^4 = pq_1q_2...q_t - (p-1)(q_1-1)(q_2-1)...(q_t-1)$, $R_1 \times F_q$ where $R_1 \cong$ $F_{p^3}[x]/(x^2)$ or $GR(p^6, p^2)$ with $p^4 = p^3 + p - 1$, $R_1 \times F_{q_1} \times \ldots \times F_{q_t}$ where R_1 is isomorphic to one of the rings described in Proposition 2, with $p^3 = pq_1q_2...q_t - (p-1)(q_1-1)(q_2-1)...(q_t-1)$, $R_1 \times F_q$ where R_1 is isomorphic to one of the rings described in Proposition 1, with $p^3 = p^2 + q - 1$ or $R_1 \times F_a$, where R_1 is a local ring of order p^6 with p^5 zero-divisors and $p^2 = p + q - 1$.

Proof. If R is reduced or $R \cong R_1 \times R_2 \times F_5$ where R_1 is isomorphic to \mathbb{Z}_4 or $\mathbb{Z}_2[x]/(x^2)$ and R_2 is isomorphic to one of the rings \mathbb{Z}_8 , $\mathbb{Z}_2[x,y]/(x,y)^2$, $\mathbb{Z}_2[x]/(x^3)$ or $\mathbb{Z}_4[x]/(2x,x^2-2\varepsilon)$ where $\varepsilon \in \Sigma_2^0$, then we are done. Otherwise by [2, Theorem 4], we have the following two cases.

Case 1: $R \cong R_1 \times F_{q_1} \times ... \times F_{q_t}$, where each F_{q_i} $(1 \le i \le t)$ is a finite field and R_1 is a local ring with $|Z(R_1)| = p^m$, $|R_1| = p^n$ such that $0 < m < n \le 6$ and

$$p^7 = p^n q_1 q_2 \dots q_t - (p^n - p^m)(q_1 - 1)(q_2 - 1) \dots (q_t - 1).$$

Case 2: $R \cong R_1 \times R_2 \times F_{q_1} \times ... \times F_{q_t}$, where each F_{q_i} $(1 \le i \le t)$ is a finite field, each R_i is isomorphic to \mathbb{Z}_{p^2} or $\mathbb{Z}_p[x]/(x^2)$ and

$$p^{5} = p^{2}q_{1}q_{2}...q_{t} - (p-1)^{2}(q_{1}-1)(q_{2}-1)...(q_{t}-1).$$
 (2)

In case 1, as in the proof of Theorem 2, R is isomorphic to one of the rings $R_1 \times F_{q_1} \times \ldots \times F_{q_t}$ where R_1 is isomorphic to \mathbb{Z}_{p^2} or $\mathbb{Z}_p[x]/(x^2)$ with $p^6 = pq_1q_2\dots q_t - (p-1)(q_1-1)(q_2-1)\dots (q_t-1)$, $R_1\times F_{q_1}\times \ldots \times F_{q_t}$, where R_1 is isomorphic to one the rings \mathbb{Z}_{p^3} , $F_p[x,y]/(x,y)^2$, $F_p[x]/(x^3)$ or $\mathbb{Z}_{p^2}[x]/(px,x^2-\varepsilon p)$ where $\varepsilon\in\Sigma_2^0$ with $p^5=pq_1q_2\dots q_t-(p-1)(q_1-1)(q_2-1)\dots (q_t-1)$, $R_1\times F_{q_1}\times \ldots \times F_{q_t}$, where R_1 is isomorphic to $F_{p^2}[x]/(x^2)$ or $GR(p^4,p^2)$ with $p^5=p^2q_1q_2\dots q_t-(p^2-1)(q_1-1)(q_2-1)\dots (q_t-1)$, $R_1\times F_{q_1}\times \ldots \times F_{q_t}$, where R_1 is isomorphic to one of the local rings of order p^4 described in [2, Corollary 3] with $p^4=pq_1q_2\dots q_t-(p-1)(q_1-1)(q_2-1)\dots (q_t-1)$, $R_1\times F_{q_1}\times \ldots \times F_{q_t}$ where R_1 is isomorphic to $F_{p^3}[x]/(x^2)$ or $GR(p^6,p^2)$ with $p^4=p^3+p-1$, $R_1\times F_{q_1}\times \ldots \times F_{q_t}$ where R_1 is isomorphic to one of the rings described in Proposition 2, with $p^3=pq_1q_2\dots q_t-(p-1)(q_1-1)(q_2-1)\dots (q_t-1)$, $R_1\times F_q$ where R_1 is isomorphic to one of the rings described in Proposition 1, with $p^3=p^2+q-1$ or $R_1\times F_q$, where R_1 is a local ring of order p^6 with p^5 zero-divisors.

In case 2, If p=2, then Since $|Z(R)|>|R_1||R_2|q_1\dots q_{t-1}$, $t\le 3$. We claim that t=2. If t=1, then the relation (2) implies that $q_1=31/3$, a contradiction. If t=3, then the relation (2) implies that 4 is a divisor of $(q_1-1)(q_2-1)(q_3-1)$. Without loss of generality we can assume that either 4 is a divisor of (q_1-1) or 2 is a divisor of both (q_1-1) and (q_2-1) . Therefore either $q_1\ge 5$ or $q_1\ge 3$ and $q_2\ge 3$. This implies that either $2^7=|Z(R)|>5|R_1||R_2|q_2=80q_2$ or $2^7=|Z(R)|>9|R_1||R_2|=144$. But it is impossible in any case. Thus t=2 and by the relation (2) we have

$$2^{5} = 2^{2}q_{1}q_{2} - (q_{1} - 1)(q_{2} - 1).$$
(3)

If 4 is a divisor of (q_i-1) for some i, then $q_i \geq 5$ and hence $2^5 = 3q_1q_2 + q_1 + q_2 - 1 \geq 30 + 7 - 1 = 36$, a contradiction. Thus 2 is a divisor of both (q_1-1) and (q_2-1) . Then $q_1-1=2k_1$, $q_2-1=2k_2$ for some positive integers k_1 , k_2 and put them into (3). Then we obtain $8=3k_1k_2+2k_1+2k_2+1$. It yields $k_1=k_2=1$ and hence $q_1=q_2=3$. Thus $R\cong R_1\times R_2\times F_3\times F_3$ where R_1 and R_2 are isomorphic to \mathbb{Z}_4 or $\mathbb{Z}_2[x]/(x^2)$.

REFERENCES 694

ACKNOWLEDGEMENTS This work was partially supported by IUT (CEAMA). The research of the first author was in part supported by a grant from IPM (No. 87160026).

References

- [1] Y. Al-Khamees, Finite rings in which the multiplication of any two zero-divisors is zero, Arch. Math, 37 (1981), 144-149. 1981.
- [2] M. Behboodi, R. Beyranvand, On the structure of commutative rings with $p_1^{k_1} \cdots p_n^{k_n} (1 \le k_i \le 7)$ zero-divisors, Euro. J. Pure and Appl. Math. 3(2), 303-316. 2010.
- [3] C.J. Chikunji, On a class of finite rings, Comm. Algebra 27(10), 5049-5081. 1999
- [4] B. Corbas and G.D. Williams, Rings of order p^5 Part I. Nonlocal rings, J. Algebra, 231 677-690. 2000
- [5] B. Corbas and G.D. Williams, Rings of order p^5 Part II. Local rings, J. Algebra, 231 691-704. 2000.
- [6] R. Gilmer, Zero-divisors in commutative rings. The American Mathematical Monthly, 93(5), 382-387. 1986.
- [7] B.R. McDonald, Finite rings with identity (Marcell Dekker, New York). 1974.
- [8] R. Raghavendran, Finite associative rings, Compositio Math. 21, 195-229. 1969.
- [9] G.D. Williams, On a class of finite rings of characteristic p^2 , Result. Math, 38, 377-390. 2000.