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Abstract. In this paper, we determine the structure of nonlocal commutative rings with p® zero-
divisors and characterize the structure of nonlocal commutative rings with p” zero-divisors. Also, the
structure and classification up to isomorphism all commutative rings with p,*...p* zero-divisors,

where n is a positive integer, p;’s are distinct prime number and 1 < k; < 4, are determined.

2000 Mathematics Subject Classifications: 16B99; 13A99; 68R10
Key Words and Phrases: Finite ring, Zero-divisor, Local ring

1. Introduction

The present paper is a sequel to [2] and so the notations introduced in Introduction of [2]
will remain in force. In particular, all rings are associative rings with identity elements, J(R)
denotes the jacobson radical of R, Z(R) denotes the set of all zero-divisors of R and for any
finite subset Y of R, we denote |Y| for the cardinality of Y. Also, F, is the finite field of order
q, F;" is the group of nonzero elements of F, and for a prime number p, %,, is a set of coset
representation of (F,")™ in F,”, Z]?n =2, U{0} and GR(p™",p") is the Galois ring of order p""
and characteristic p”.

In [2] the structure and classification up to isomorphism all rings with p;*1...p.% zero-
divisors, where s is a positive integer, p;’s are distinct prime number and 1 < k; < 3 were
determined. Also we determined the structure of nonlocal rings with p* zero-divisors where
k = 4 or 5. In the paper we develop these results. In fact the structure and classification up
to isomorphism all rings with p;¥1p,*2 ... p./% zero-divisors, where s is a positive integer, p;’s
are distinct prime number and 1 < k; < 4 are determined. Also we determine the structure of
nonlocal rings with p® zero-divisors and characterize the structure of nonlocal rings with p’
zero-divisors.
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2. On Rings with p* Zero-divisors
We recall the following facts that we will use them in the paper:

(i) An Artinian commutative ring R is called completely primary if R/J(R) is a field. One
can easily see that an Artinian commutative ring R is completely primary if and only if
Z(R) is an ideal of R, if and only if R is a local ring.

(i) LetR; (1 <i < t) be a nonzero finite commutative ring with m; elements and n; zero-
divisors. Then by [6, Theorem 2], the ring R; X...XR, hasm;m,...m,—(m; —n;)(my—
nsy)...(m, —n,) zero-divisors.

(iii) Every finite commutative ring is uniquely expressible as a direct sum of completely
primary (local) rings (see for example [7, p.95]).

We need the following two lemmas which are crucial in our investigation.
Lemma 1. [8, Theorem 2] Let R be a finite completely primary ring. Then
1. Z(R)=J(R);
2. |Z(R)| = p™Vr and |R| = p™ for some prime number p, and some positive integers n, r;
3. Z(R)"=0;
4. char(R) = p* for some integer k with 1 < k < n;
5. R/J(R) = Fy, where q =p'.

Lemma 2. [2, Theorem 2] Let R be a commutative ring such that |Z(R)| = p* for some prime
number p and a positive number k. Then either

(i) Ris local,
(ii) R is reduced or

(iii) k=3 andR=Ry X ... XR; X Fy X...X Fy where s and t are positive integers, each Fg_ is
a field, and where each R; is a commutative finite local ring with |Z(R;)| = pY, |R;| = pki
for some positive integers k; and t; with 1 <D_ t; <> k; —s <k —s— 1 such that

pF it =g, ... qpTakiT) — (g, — 1)...(q, — DIT_, (pFt —1). (1)

Consequently, in the latter case, ¢; = 1 (p) and for each i = 1,...,s, t; < k — 2. Moreover, if
tj=k—2forsome j€{l,...,s}, thens =t =1, i.e, R=Ry X Fy where |Z(R;)| =p*=2 and so

p’=p+q-—1.
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Also we need the following construction [3, p.5071].

Construction A. Let R, be the Galois ring GR(p*", p?) or GR(p®", p®). Lets, d, t, A be integers
with either 1 <t <s2,1 <1+t <s?orl1<d+t <s?ifchar(Ry) =p?or1 <1+d+t <1+s>
if char(R,) = p%,and A > 0. Let V, W be R/pR,-spaces which when considered as R,-modules
have generating sets {v;,...,v,} and {wq,...,w,} respectively. Let U be an R,-module with
an Ry-modules generating set {uy,...,u}; and suppose that d > 0 of the u; are such that
pu; # 0. Since R, is commutative, we can think of them as left and right Ry-module.

Let (a%j), for | = 0,1,...,t,t +1 or d +t, be s x s matrices with entries in Ry/pR, if
char(Ry) = p2 or 1l = 0,1,...,d + t be (1+5) x (1 +s) matrices with entries in Ry/pR, if
char(R,) = p°.

Consider the additive group direct sum R =R, ® U & V @ W and define a multiplication on R
by

(CIRDIA T Z?:l Bjvj, Zzi:l riwi)-(ag, 2o, Z?:l /5]{")" Z;i:l TWi) =
(aoagtp’ X3 iy alila;ai+pRol, Do [agai+asag+p X iy af[a;a+pRollu;, Z?:l[(a0+
PR)B|+Bj(ag+PRo)1vj, 2y [(@o+pRo)vi+rilag+pRo)+ 25—y alit[aya+pRolIwy)
where f =1 or 2, depending on whether char(R) = p? or p3. Then by [3, Theorem 6.1], this
multiplication turns R into a ring and any local ring with Z(R)® = 0, Z(R)? # 0 of characteris-
tic p2 or p3, is isomorphic to one given by construction A.

Proposition 1. Let R be a commutative ring with |Z(R)| = p* and |R| = p® where p is a prime
number. Then R is isomorphic to one of the rings GR(p®, p), F b2 ® Fp2 @ Fp2 with multiplication
(ro,71,72)(S0,51,52) = (9S0, ToS1 + 7'150, T'oS2 + T250),S @ F with multiplication (ry,71)(Sg,51) =
(roSo>ToS1 + r150), where S = GR(p*,p?) and F = S/pS, Fy2 @ Fp2 @ Fp2 with multiplication
(ag, a,y)(ag, a’,v") = (agag, aga’+aay, agy’ +yag+aa’) or Ry®Ry/pR, with multiplication
(ag, @+ pRo)(ap, @' + pRoy) = (apap + ad’p,aga’ + aay + pRy) where Ry = GR(p*, p?).

Proof. Since R is a ring with |Z(R)| = p* and |R| = p®, by Lemma 1, Z(R)® = 0. Thus we
consider the following cases.

Case 1: Z(R)?> =0 i.e., R is a ring in which the multiplication of any two zero-divisors is zero.
Then by [1, Theorem 1], R is isomorphic to one of the rings S @ F¥, where S is either the
field of p” elements or the Galois ring GR(p?", p?) and F = S/pS with the multiplication

(rO’ Tiyeees rk)(SO’Sb v ’Sk) = (r0303 T'oS1 + r1805+-+>T0Sk + rkSO)

for some positive integers r and k.

Now since |Z(R)| = p* and |R| = p®, we can conclude that § = Fp and k = 2 or
S = GR(p*,p?) and k = 1. Thus R is isomorphic to one of the rings Fo®F,®F,
with (rg, 71, 79)(Sg,51,52) = (IgSg, ToS1 + 150> ToS2 + 1'2Sg) or S @ F with (rg, r1)(sg,51) =
(roS0, 7oS1 + '150), Where S = GR(p*,p?) and F = S/pS.

Case 2: Z(R)? # 0. If char(R) = p, then by [ 3, Theorem 4.1], any commutative local ring of
characteristic p in which the multiplication of any two zero-divisors is zero, is isomor-
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phic to one of the rings F ® U & V @ W with multiplication

s A t s A t
/ / / /
(aO’ Z a;u;, Z ﬁjvj’ Z kak)(ao, Z a;u;, Z ﬁj‘{i; Z kak)
i=1 j=1 k=1 i=1 j=1 k=1
s A

t S
k
= (aoatp, O [0t} + azayluy, Y [aoB] + Biaplv, Y [atory +1rcty + O ab;aJwy)
i=1 j=1 k=1 i,j=1

where F is the field of order r and U, V,W are s, A, t -dimensional F-spaces respectively,
for some integers s, A,t with A >0 and 1 < t <s2, where {u;}, {v;} and {w;} are bases
for U, V and W respectively, and (af." j) 1 <k <t are t matrices of size s X s with entries
in F. Since |R| = p®, we can conclude that t =s = 1 and A = 0. On the other hand by
[3, Corollary 5.2], we can put a%l = 1. Thus R = F,2» ® F,» & F» with multiplication
(ag, a,7)(ag, a’,v") = (apag, apa’ + aay, agy’ + ya, + aa’).

Now suppose that char(R) = p? or p>. Since |R| = p® and |R/J(R)| = p?, by construction
A we conclude that s = 1and t = A = 0 if char(R) = p2ands =t = A = 0 if
char(R) = p>. Also by [3, Lemma 7.1], we can put a(l)1 =1 and so the following rings is
obtained.

If char(R) = p?, then R = R, ®R,/pR, with multiplication (a, o+ PRo).(ag, a’+pRy) =
(apay + ad’p,apd’ + aay + pRy), where Ry = GR(p*,p?) and if char(R) = p>, then
R = GR(p%,p%).

Proposition 2. Let R be a commutative ring with |Z(R)| = p* and |R| = p° where p is a
prime number. Then R is isomorphic to one of the rings Zs, F,, [x]/(x>), F, [x,y1/(x* xy,y?),
F,x,y1/Gct xy, 2 = x3), Z,0x, 3,5, 61/(x, 3,2, 0%, Zya[x]/(px, x* — ap) where a € 32,
sz[x]/(pxz,x3 — bp) where b € ©3 and p # 3, Zo[x]/(3x%,x® — 3 — 3bx) where b €
{=1,0,1}, Z,2[x]/(px?, x> — apx) where a € £3, Z,2[x,y,2]/(p, x,y,2)%, Z,3[x]/(p*x,x* -
ap) where a € &y and p # 2, Zg[x]/(4x, x% — 2a — 2bx) where (a, b) € {(1,0),(1,1),(—=1,1)},
Z,3[x]/(px,x® — ap®) where a € %3, Z,3[x]/(p*x,x*> — ap®) where a € £J and p # 2,
Zg[x]/(4x, x> — 4a — 2bx) where (a, b) € {(0,0),(0,1),(1,1)}, Z,+[x]/(px, x> — ap®) where
aec Zg,

(1,x1,x2,¥1,Y2; P1 =0, X12 =X Xz2 =0, XX =Y2, X;Y; =Yi¥j = 0),

(1,x1,%2,¥1,¥2; P1 =0, x;% = x> = y1, X1X3 = ya, X;y; = y;y; = 0) where p # 2,
(1,x1,X%0,¥1,¥2; P1 =0, X2 =y, x> =&y, x1%9 =5, X;¥; = ¥;y; = 0) where p # 2 and
€ is a non-square in F,

(1,x1,x3,¥1,Y92; 2.1=0, x12 =JY1 x22 =DYa, X1X2 = Y2, XiYi = YiYVj = 0),

(1,x1,%9,¥1,¥25 21 =0, 12 = y1, x> = y1 + ¥a, X1X3 = Y5, X;¥; = y;¥j = 0),
(1,x1,%5,X3,¥; p1=0, x;2 =y, x,2 =x3%= XiXj=X;y = y2=0, fori#j),
(1,x1,X9,%3,¥; P1 =0, x;2=x2 =y, x3°2 = XiX; =X;y = y2 =0, fori#j),
(1,x1,x5,%3,¥; p1=0, x;2=y, XiXj = X;y = y2 =0, fori#j),

(1,x1,x2,x3,)’§ p]- = O’ xlz =Y, x22 =€), X32 = XiX; = X;y = .y2 = O,fOT' i # J) where

j
p # 2 and € is a non-square in F,,
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(1,x1,%0,%3,¥; 21 =0, X = X105 = X103 = X;y = y*> =0, X3 = y),

(1,x,y,2,p; p21 =0, x> =az, xz = D, y? = op, 22 = xy = yz = 0) where a € Y3 and
5ex),

(1,x,y; p’1=p?*x=py =0, x>2=ap, y>=6px, xy =0) wherep #2, a € L, and § =0
ora€¥,and 6 =1,

(1,x,y; 41=4x=2y =0, x2=2, y’=x
(1,x,y; 41=4x=2y =0, x2=2+42x, y?=xy =0),
(1,x,y; 41=4x=2y =0, x2=2, y?>=2x, xy =0),

(1,x1,%5,x3,p; P21 =px; =0, x;2 =vp, x,°2=x32=0, x;xj =0 for i # j) where p # 2, €
is a non-square in F, and v € {1, €},
(1,x1,%5,X3,p; p1=px; =0, x> =1, X,
€ is a non-square in F, and v € {1,¢€},
(1,x1,%3,X3,p; pP°1=px; =0, ;> = x> =1, x5
is a non-square in F, and v € {1, €},

(1,x7,%9,x3; 41 =2x;=0, x,2=2, x,2 =x32=0, x;x; =0 for i # j),

(1,x1,X9,x3; 41 =2x; =0, x;2=1, x,2 =2, x3° = 0, x;x; =0 for i # j),

(1,x1,Xx9,%3; 41=2x;=0, x;> = x> =1, x3> =2, x;x; =0 for i # j),

(1,x1,%5,y; p?1=px; =py =0, x;° =1, X, =0, x1x5 = x1y = X5 =0),

(1,x1,%0,; pP’1=px; =py =0, x;°> =1, x> = y, X105 = X1¥ = X3y =0),

(Lx1,%0,y; pPP1=px; =py =0, x;° =1, x> = &y, X1%3 = X1y = X,y = 0) where p # 2,
& is a non-square in F,,

(L,x1,%0,y; 41=2x; =2y =0, x° = X% = x5 = X35 =0, X1, = y),

(1,x,y,p; p?1=p?>x=py =0, x>=0, y>=5px, xy =0) where § €{0,1} and p # 2,
(1,x,y; 41=4x=2y =0, x2 = a2x, y> = 52x, xy = 0) where (a,5) € {(0,0),(1,0),(1,1)},
(1,x1,X2; P°1=px; =0, x1°> = x> =0, x1X, =0),
(
(
(
(

2=wyp, x32=0, x;xj =0 for i # j) where p # 2,

2 =yp, x;x; =0 for i # j) where p # 2, €

e 31 — _ —_ 2 2 _ _
1,X1,X2, p 1 =pX;i = O’ X1 =P X" = X1Xg = O):
2

1,X1,X2; p31 =pxi = 0) xl :x22 =p21 xle =O>;

2

1,1, X9; p°1=px; =0, x1°> = €p?, x> = x1x5 = 0) where p #2,
2
2 2

1,x1,X9; P21 =px; =0, x;2 =p?, x,2 = ep?, x1x, = 0) where p # 2 and € is a non-square
in F,,

(1,x1,x5; 8.1=2x;=0, x;°2=x,2=0, x7x3 =4) or

one of the rings given in full in [9]. The number of these rings is 10 or 6 according to whether
p#2orp=2

Proof. By using [5] and [9] one can check that R is isomorphic to one of the above rings.

Theorem 1. Let R be a ring with |Z(R)| = p* where p is a prime number. Then R is isomor-
phic to one of the rings described in Proposition 1, Proposition 2, the Galois ring GR(p®, p?),
Fps [x]/(x?), Zpy2 X Fq X ...X Fy, Z, [x]/(x2)4>< Fg X ... X F, where p>=p3%q...q, — (p*>—
p)Xq1—1)...(q; — 1), Fy, X ... X Fy where p* = q1q3...9; —(q1 —1)(q2 — 1)...(q. — 1) or
Ry X Fy with p? = p+q — 1 where R is isomorphic to one of the rings Zpys, F, [x,y1/(x,¥)%
F, [x]/(x®) or Zy2 [x1/(px,x?—ep) where ¢ € Zg.
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Proof. Suppose that R is a local ring. Then by Lemma 1, |R| = p°, p® or p8. If |R| = p° or p°®,
then R is isomorphic to one of the rings described in Proposition 1 or Proposition 2. If |R| = p8,
then by [8, Theorem 12], R is isomorphic to the Galois ring GR(p®, p?) or Fpa[x]/ (x?). Now
suppose R is a nonlocal ring. If R is reduced, then we are down. Otherwise by Lemma 2,
1< ijl t; <2 and hence 1 <s < 2. Thus we proceed by cases.

Case 1: s=1.Thent;=1or2. Ift; =1,then R=R; X F; X ... X F;, where R, is a local ring
of order p? with p zero-divisors. By [4, p.687], R; is isomorphic to Zy2 or Zp[x]/(xz).
If t; = 2, then by Lemma 2, R = R; X F,, where R; is a local ring of order p> with
p? zero-divisors and p? = p +q — 1. Moreover by [4, p.687], R, is isomorphic to L3,
F, [x,y1/(x,¥)?, F, [x]/(x®) or Ly [x]/(px,x?— ep) where ¢ € Zg.

Case 2: s=2,ie.,t; =ty =1. Then R=R; XRy X Fy, X... X F, , where each R; is a local ring
with |Z(R;)| = p. Now by Lemma 1, |R;| = |R,| = p2. If t > 1, then clearly |Z(R)| > p*,
a contradiction. Therefore t = 1 and hence by relation (1) in Lemma 2, p2 is a divisor
of ¢; — 1. Thus q; > p? and so |Z(R)| > |Z(RDIIR|[Fg, | = p>, a contradiction.

Corollary 1. Let R be a ring with |Z(R)| = p]flp];2 .. .pﬁ", wheren>1, 1 < k; < 4 and p;’s are

distinct prime numbers. Then there exist 0 <s < %.;_ k; and t > 0 such that

R=R; X...XRyxFy X...xFg
where F, s are finite fields and each R; is local ring with |Z(R;)| = p]t.j forsomep; (1<j<n)
and 1 < t; < k;. Consequently, each R; is isomorphic to one of the local rings described in [2,
Theorem 5] or Theorem 1.

Proof. We put
R=RyX...xXR X Fy X...xFy,

where Fg -
that is not a field. By Lemma 2, for each i, |Z(R;)| = p* for some prime number p and
k > 1 such that p* is a divisor of |Z(R)| and also 0 < s < ot ki Thus |Z(R;)| = p;j where
1<tj<kj,1<j<nand1<i<s. Henceforeachl<i<s,t;=1,2,3 or 4 and so each R;
is isomorphic to one of the local rings described in [2, Theorem 5] or Theorem 1.

., Fq, are finite fields and each R; is a commutative finite local ring with identity

Theorem 2. Let R be a commutative nonlocal ring with |Z(R)| = p® where p is a prime number.
Then R is isomorphic to one of the rings Fy, X ... X Fy with P’ =q1q5...q, — (g1 — 1)(qy —
1)...(qe = 1), Zg X Zy X F5,Z5[x]/(x?) X Zy X Fs, Zy[x]/(x*) X Zy[x]/(x*) X Fs, Ry X
Fq, X ... X Fy, where Ry is isomorphic to Zy2 or Z, [x]/(x?) and p°> = pqiqy...q, — (p —
(g1 —1)(g2—1)...(q — 1), Ry X Fg, X ... x Fy, where Ry is isomorphic to one the rings Z3,
Folx,¥1/(x, )% Fy[x1/(x®) or Z,2[x]/(px,x* — ep) where ¢ € %3 and p* = pq1qz...q, —
(p—1)(q1 —1)(q2—1)...(q — 1), Ry X Fg, X ... X Fy , where Ry is isomorphic to F,: [x]/(x?)
or GR(p*,p?) and p* = p*q1qz...q. — (p* = 1)(q1 —1)(q2 = 1)...(q — 1), Ry X Fy X ... X Fg,
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where Ry is isomorphic to one of the local rings of order p* described in [2, corollary 3] and
P> =pqiqs...q, —(p—1)(q1 — 1)(g3—1)...(q; — 1) or Ry x Fy where R, is isomorphic to one
of the rings described in Proposition 2, and p?> =p +q — 1.

Proof. If R is reduced, then we are down. Now suppose that R is not reduced. Then by
[2, Theorem 4], either R is isomorphic to Z4 X Z4 X Fs, Zy[x]/(x%) X Z4 X Fs, Zy[x]/(x?) x
Zy[x]/(x?) x Fs or R = Ry X Fq, X ... X Fy, where R; is a local ring with |Z(R,)| = pk
(1<k<4)andt > 1. Thus we proceed by cases.

Case 1: [Z(Ry)| = p. Then by [4, p.687], R; is isomorphic to Z,. or Z, [x]/(x?) and p°> =
Pq192---9c — (P —1)(q1 — (g2 — 1)... (¢ — D).

Case 2: |Z(R,)| = p%. Then by Lemma 1, |R;| = p® or p*. If |R;| = p3, then by [4, p.687], R, is
isomorphic to one the rings Z,s3, F, [x,y1/(x,¥)?%, F, [x]/(x®) or Zy2 [x1/(px,x?—ep)
where ¢ € %) and p* = pq1q3...q; — (p — (g1 — (g2 — 1)... (g — 1). If [Ry] = p*,
then by [8, Theorem 12], R, is isomorphic to F [x]/(x?) or GR(p*,p?) and p* =
P’q142--- 9 — (p* = (g1 — 1)(g2 — 1)... (g, — 1).

Case 3: |Z(R;)| = p®. Then by Lemma 1, |R;| = p* or p®. If |R;| = p®, then |Z(R)| > |R;| which
is impossible. Thus |R;| = p* and so R, is isomorphic to one of the local rings of order
p* described in [2, corollary 3] and p® = pq1q5...q,—(p—1)(q1 —1)(g2—1)...(g,—1).

Case 4: |Z(Ry)| = p*. ThenbyLemmal, |R;| = p°,p® or p8. If [R;| = p® or p®, then |Z(R)| > |R,|
which is impossible. Thus |[R;| = p° and so R, is isomorphic to one of the rings described
in Proposition 2. Also by Lemma 2, R =R, X F; and p>=p+q-1.

Theorem 3. Let R be a commutative nonlocal ring with |Z(R)| = p” where p is a prime number.
Then R is isomorphic to one of the rings Fy X ... X F, with P’ =q1qy...q; — (@1 — 1)(qy —
1)...(q—1), Zy X Zy X F3 X F3, Zy[x]/(x*) X Zg X F3 X F3, Zp[x]/(x*) X Zp[x]/(x*) X F3 X F3,
Ry X Ry X Fs where Ry is isomorphic to Z, or Z,[x]/(x?) and R, is isomorphic to one of the
rings Zg, Zy[x,y1/(x,¥)?, Zy[x1/(x>) or Zy[x]/(2x,x* — 2¢) where € € 1.9, Ry X Ry X Fy, X
... X Fy , where p is an odd prime number; each R; is isomorphic to Z,: or Z, [x]/(x?) and p° =
%9195 ...q,—(p—1)*(q;—1)(g2—1)...(q,—1),R, X Fq, X...XFq where Ry is isomorphic to Z,»
or Zp[x]/(xz) with p® = pq1q, ...q,—(p—1)(q;—=1)(g5—1)...(q,—1), R, XFq X...XF, where
R; is isomorphic to one the rings Zs, Fp[x,y]/(x,y)z, F, [x]/(x®) or sz[x]/(px,x2 —€p)
where € € Zg with p° = pqiqs...q,—(p—1)(q;—1)(g,—1)...(q,— 1), Ry X Fq X...XF, where
Ry £ F,2[x]/(x?) or GR(p*, p®) with p* = p*q1q3...q, — (P> = 1)(q; = 1)(g2 — 1) ... (q, — 1),
Ry X Fg X ... X F, where R, is isomorphic to one of the local rings of order p* described in [2,
Corollary 3] and p* = pq1qy...q, — (p — 1)(q; — 1)(gy — 1)...(q, — 1), Ry X Fy where Ry =
F,3[x]/(x?) or GR(p®, p*) with p* = p*+p—1, Ry X Fy, X...xF, where R, is isomorphic to one
of the rings described in Proposition 2, with p*> = pq1q,...q,—(p—1)(q1 —1)(g3—1)...(q, — 1),
Ry X F, where R, is isomorphic to one of the rings described in Proposition 1, with p>=p%+q-1
or Ry X Fy, where Ry is a local ring of order p® with p° zero-divisors and p?> =p +q — 1.
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Proof If R is reduced or R = R; X R, X Fs where R; is isomorphic to Z, or Z,[x]/(x?) and
R, is isomorphic to one of the rings Zg, Zy[x, y1/(x, y)?, Zs[x]/(x®) or Z,[x]/(2x, x* — 2¢)
where ¢ € Zg, then we are done. Otherwise by [2, Theorem 4], we have the following two
cases.

Case 1: R=R; xF, X...xF,,where each F, (1 <i<t)isafinite field and R, is a local ring
with |Z(R;)| =p™, |R;| =p" such that 0 <m < n < 6 and

p’=p"q195...q;. —(p" = p™)gq1 — 1)(gz — 1)...(g, — 1).

Case 2: R =Ry XRy X Fy X...XFg, where each F;, (1 <i < ¢t) is a finite field, each R; is
isomorphic to Z,> or Zp[x]/(xz) and

P’ =p*q1q5...q. — (p — 1)*(qy - 1)(qz — 1)...(q;, — 1). (2)

In case 1, as in the proof of Theorem 2, R is isomorphic to one of the rings Ry X Fy, X
... X Fy where R; is isomorphic to Z,> or Z, [x]/(x?) with p® = pqyqs...q, — (p —
(g1 — 1)(g2 —1)...(q — 1), Ry X Fy, X ... X Fy , where R, is isomorphic to one the
rings Z,3, F,, [x,y1/(x,¥)?%, F, [x]/(x3) or Ly [x]1/(px,x?>—ep) where ¢ € Zg with p° =
Pq1qz2---q:—(P—1)(q1—1)(q2—1)...(q¢—1), Ry X Fg, X...XFy , where R, is isomorphic
to F2 [x]/(x?) or GR(p*, p?) with p* = p*q1q5... ¢, —(p* = 1)(¢1 = 1)(g2— 1) ... (g, — 1),
Ry XFy X...XFg, where R; is isomorphic to one of the local rings of order p4 described
in [2, Corollary 3] with p* = pq1q5...q, —(p — 1)(q; — 1)(g5 — 1)...(q, — 1), Ry X F,
where R, is isomorphic to Fs [x]/(x?) or GR(p®, p?) with p* =p® +p—1, R; x Fg %
... X F, where R, is isomorphic to one of the rings described in Proposition 2, with
P’ =pq1qs...q,—(p—1)(q; —1)(g3—1)...(g, — 1), Ry X F4 where R, is isomorphic to
one of the rings described in Proposition 1, with p® = p2+q—1or R, x Fg, where Ry is
a local ring of order p® with p® zero-divisors.

In case 2, If p = 2, then Since |Z(R)| > |[R{||R5|q1-.-q;—1, t < 3. We claim that t = 2.
If t = 1, then the relation (2) implies that g; = 31/3, a contradiction. If t = 3, then
the relation (2) implies that 4 is a divisor of (q; — 1)(g, — 1)(q3 — 1). Without loss of
generality we can assume that either 4 is a divisor of (q; — 1) or 2 is a divisor of both
(g1 — 1) and (g5 — 1). Therefore either q; > 5 or g; > 3 and g, > 3. This implies that
either 27 = |Z(R)| > 5|R;||R,lq, = 80q, or 27 = |Z(R)| > 9|R;||R,| = 144. But it is
impossible in any case. Thus t = 2 and by the relation (2) we have

2° =2%q,q5 — (g1 — 1)(g2 — 1). (3)

If 4 is a divisor of (q; — 1) for some i, then g; > 5 and hence 2° = 3q;q, +q; +q, — 1 >
30+7—1=36, a contradiction. Thus 2 is a divisor of both (q; — 1) and (q, — 1). Then
q; — 1 =2k;, gy — 1 = 2k, for some positive integers ki, k, and put them into (3). Then
we obtain 8 = 3kk,y + 2k; + 2k, + 1. It yields k; = k, = 1 and hence q; = g, = 3. Thus
R =R, X Ry X F3 X F5 where R; and R, are isomorphic to Z, or Z,[x]/(x?).
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