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1. Introduction

Consider the second-order singular differential operator on the real line

∆=
d2

d x2
+

A′(x)
A(x)

d

d x
(1)

where

A(x) = |x |2α+1 B(x), α > −1

2
,

B being a positive C∞ even function on R. In addition we suppose that
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(i) A is increasing on [0,∞[ and limx→∞ A(x) =∞;

(ii) A′/A is decreasing on ]0,∞[ and limx→∞ A′(x)/A(x) = 0;

(iii) There exists a constant δ > 0 such that the function eδx B′(x)/B(x) is bounded for large

x ∈ ]0,∞[ together with its derivatives.

Lions [5] has constructed an automorphism X of the space Ee(R) of C∞ even functions on

R, which intertwines ∆ and the second derivative operator d2/d x2; that is, satisfying the

intertwining relation

X d2

d x2
f =∆X f , f ∈ Ee(R).

It is known [14] that the Lions operator X admits the integral representation

X f (x) =

∫ |x |

0

G(x , y) f (y)d y, x 6= 0,

where G(x , ·) is an even positive function on R, continuous on ]− |x |, |x |[ and supported in

[−|x |, |x |]. Furthermore, the dual Lions operator

tX f (y) =

∫ ∞

|y|
G(x , y) f (x)A(x)d x , y ∈ R,

is an automorphism of the space Se(R) of even Schwartz functions on R, satisfying the inter-

twining relation

d2

d x2
tX f = tX∆ f , f ∈ Se(R).

In [8] the second author has introduced on the space E (R) of C∞ functions onR, the following

operator

V f =X ( fe) +
d

d x
X I( fo), (2)

where

fe(x) =
f (x)+ f (−x)

2
, fo(x) =

f (x)− f (−x)

2
, (3)

and I is the map defined by Ih(x) =
∫ x

0
h(t)d t.

Mainly, he showed that V is an automorphism of E (R) satisfying for all f ∈ E (R),

V
d

d x
f = ΛV f , (4)

where Λ is a first-order differential-difference operator on R given by

Λ f (x) =
d f

d x
+

A′(x)
A(x)

�
f (x)− f (−x)

2

�
(5)
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For A(x) = |x |2α+1, α > −1/2, the intertwining operator V reads

V ( f )(x) =
Γ(α+ 1)p
πΓ(α+ 1/2)

∫ 1

−1

f (t x)(1− t2)α−1/2 (1+ t) d t,

and referred to as the Dunkl intertwining operator of index α+ 1/2 associated with the re-

flection group Z2 on R. The differential-difference operator Λ reduces to the one-dimensional

Dunkl operator

Dα f =
d f

d x
+ (α+

1

2
)

f (x)− f (−x)

x
.

Such operators have been introduced by Dunkl in connection with a generalization of the

classical theory of spherical harmonics (see [1, 11] and the references therein). During the last

years, the theory of Dunkl operators has found a wide area of applications in mathematics and

mathematical physics. In fact, Dunkl operators have been used in the study of multivariable

orthogonality structures with certain reflection symmetries [12, 16]. Moreover, they have

been successfully involved in the description and solution of Calogero-Moser-Sutherland type

quantum many body systems [4] .

Define the dual operator t V of V on the space S (R) of Schwartz functions on R, by the

relation

t V f = tX ( fe) +
d

d x
tX J( fo), (6)

where J is the map defined by

Jh(x) =

∫ x

−∞
h(y)d y, x ∈ R. (7)

In this paper, it is shown that the dual operator t V is an automorphism of S (R)which satisfies

the intertwining relation
d

d x
t V f = t VΛ f , f ∈ S (R).

Moreover, the following inversion formulas for V and t V on certain specific subspaces ofS (R)
are provided

f = V K t V f ;

f =M V t V f ;

f = t VM V f ;

f =K t V V f ;

K andM being pseudo-differential operators. But the main contribution of this work is the

determination of the inverse operators V−1 and t V−1 through a continuous wavelet transform

on R associated with the differential-difference operator Λ. For examples of use of wavelet

type transforms in inverse problems the reader is referred to [2, 6, 7, 10, 15] and the refer-

ences therein. The content of this paper is as follows. In Section 2 we provide some harmonic
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analysis results related to the differential-difference operator Λ. Next we list some basic prop-

erties of the generalized Dunkl intertwining operator V and its dual t V . In section 3 we

introduce the generalized continuous wavelet transform associated with Λ, and we prove for

this transform Plancherel and reconstruction formulas. Using generalized wavelets, we obtain

in Section 4 formulas which give the inverse operators V−1 and t V−1 on Schwartz type spaces.

2. Preliminaries

In this section we provide some facts about harmonic analysis related to the differential-

difference operator Λ. We cite here, as briefly as possible, only those properties actually

required for the discussion. For more details we refer to [8].

Notation. We denote by

- S (R) the space of C∞ functions f on R, which are rapidly decreasing together with

their derivatives, i.e., such that for all m, n = 0,1, . . .,

Pm,n( f ) = sup
x∈R
(1+ x2)m
����

dn

d xn
f (x)

����<∞.

The topology of S (R) is defined by the semi-norms Pm,n, m, n = 0,1, . . . .

- Se(R) (resp. So(R)) the subspace of S (R) consisting of even (rep. odd) functions.

- B(R) the subspace of S (R) consisting of functions f such that for all n= 0,1, . . .,

∫

R

f (x)bn(x)A(x)d x = 0,

with bn(x) = V

�
yn

n!

�
(x), V being the generalized Dunkl intertwining operator given

by (2).

- W (R) the subspace of S (R) consisting of functions f such that for all n= 0,1 . . .,

∫

R

f (x)xnd x = 0.

- H (R) the subspace of S (R) consisting of functions f such that for all n= 0,1 . . .,

dn

d xn
f (0) = 0.

Put

Be(R) = Se(R)∩B(R), Bo(R) = So(R)∩B(R),
We(R) = Se(R)∩W (R), Wo(R) = So(R)∩W (R),
He(R) = Se(R)∩H (R), Ho(R) = So(R)∩H (R).
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Remark 1.

(i) Due to our assumptions on the function A there is a positive constant k such that

A(x)∼ k |x |2α+1, as |x | →∞.

(ii) It follows from (4) that

Λbn+1 = bn (8)

for all n ∈ N . Further, by [9] we have for any n ∈ N and x ∈ R,

|bn(x)| ≤ k |x |n,

k being a positive constant depending only on n.

(iii) It is easily checked that the space S (R) is invariant under the differential-difference oper-

ator Λ.

For each λ ∈ C the differential-difference equation

Λu = iλu, u(0) = 1, (9)

admits a unique C∞ solution on R, denoted Ψλ given by

Ψλ(x) =

¨
ϕλ(x)+

1

iλ

d

d x
ϕλ(x) if λ 6= 0,

1 if λ= 0,
(10)

where ϕλ designates the solution of the differential equation

∆u= −λ2u, u(0) = 1, u′(0) = 0, (11)

∆ being the differential operator defined by (1).

Remark 2.

(i) If A(x) = |x |2α+1, α > −1/2, then

Ψλ(x) = jα(λx)+
iλx

2(α+ 1)
jα+1(λx),

where jγ (γ > −1/2) stands for the normalized spherical Bessel function of index γ given

by

jγ(z) = Γ(γ+ 1)

∞∑

n=0

(−1)n (z/2)2n

n! Γ(n+ γ+ 1)
(z ∈ C).
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(ii) It follows by (4) and (9) that

Ψλ(x) = V
�

eiλ·� (x) (12)

for all x ∈ R and λ ∈ C.

The next statement provides a new estimate for the eigenfunction Ψλ(x).

Lemma 1. For all λ, x ∈ R, we have

|Ψλ(x)| ≤ 1.

Proof. For λ = 0, the result is obvious. For λ 6= 0, set

uλ(x) = |Ψλ(x)|2 =
����ϕλ(x)+

1

iλ

d

d x
ϕλ(x)

����
2

= (ϕλ(x))
2+

1

λ2

�
d

d x
ϕλ(x)

�2
.

Notice that uλ(x) is even in x . By (11),

d

d x
uλ(x) = 2ϕλ(x)

d

d x
ϕλ(x)+

2

λ2

d

d x
ϕλ(x)

d2

d x2
ϕλ(x) = −

2

λ2

A′(x)
A(x)

�
d

d x
ϕλ(x)

�2
.

As the function A is increasing on [0,∞[, it follows that uλ is decreasing on ]0,∞[. As

uλ(0) = 1, we deduce that uλ(x)≤ 1 for all x ≥ 0. This ends the proof.

Notation. For a positive Borel measure µ on R, and p = 1 or 2, we write Lp(R, dµ) for

the class of measurable functions f on R for which

‖ f ‖p,µ =

�∫

R

| f (x)|pdµ(x)

�1/p
<∞.

Definition 1. The generalized Fourier transform of a function f in L1(R,A(x)d x) is defined by

FΛ( f )(λ) =
∫

R

f (x)Ψ−λ(x)A(x)d x . (13)

Remark 3. Let f ∈ L1(R,A(x)d x). By Lemma 1, it follows that FΛ( f ) is continuous on R and

||FΛ( f )||∞ ≤ ‖ f ‖1,A.

An outstanding result about the generalized Fourier transform F is as follows.

Theorem 1. [8]

(i) For every f ∈ L1 ∩ L2(R,A(x)d x) we have the Plancherel formula

∫

R

| f (x)|2A(x)d x =

∫

R

|FΛ( f )(λ)|2dσ(λ).
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where

dσ(λ) =
dλ

|c(|λ|)|2 ,

c(z) being a continuous functions on ]0,∞[ such that

c(z)−1 ∼ k1 zα+
1

2 , as z→∞,

c(z)−1 ∼ k2 zα+
1

2 , as z→ 0,

for some k1, k2 ∈ C.

(ii) The generalized Fourier transform FΛ extends uniquely to a unitary isomorphism from

L2(R,A(x)d x) onto L2(R, dσ). The inverse transform is given by

F−1
Λ g(x) =

∫

R

g(λ)Ψλ(x)dσ(λ)

where the integral converges in L2(R,A(x)d x).

Remark 4.

(i) The tempered measure σ is called the spectral measure associated with the differential-

difference operator Λ.

(ii) For A(x) = |x |2α+1, α > −1/2, we have

c(s) =
2α+1 Γ(α+ 1)

sα+1/2
.

The following lemma will play a key role in the remainder of this section.

Lemma 2. The map J, given by (7), is a topological isomorphism

- from So(R) onto Se(R);

- fromBo(R) ontoBe(R).

Proof.

(i) It is sufficient to show that J maps continuously So(R) into Se(R). Let f ∈ So(R).

Clearly J f is a C∞ even function on R. For n = 1,2, . . ., Pm,n(J f ) = Pm,n−1( f ). More-

over,

(1+ x2)m |J f (x)| ≤ (1+ x2)m
∫ ∞

|x |
| f (t)|d t
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≤
∫ ∞

|x |
(1+ t2)m | f (t)|d t

≤ Pm+1,0( f )

∫ ∞

|x |

d t

(1+ t2)

Hence Pm,0(J f )≤ π
2

Pm+1,0( f ).

(ii) Let f ∈Bo(R). By using (8) and by integrating by parts we have for any n= 0,1, . . .,
∫

R

J f (x) bn(x)A(x)d x =

∫

R

J f (x)Λbn+1(x)A(x)d x

= −
∫

R

ΛJ f (x) bn+1(x)A(x)d x

= −
∫

R

f (x)bn+1(x)A(x)d x = 0,

which shows that J f ∈ Be(R). Conversely, let f ∈Be(R). Identity (8) together with an

integration by parts yields for any n= 1,2, . . .,
∫

R

f ′(x)bn(x)A(x)d x =

∫

R

Λ f (x)bn(x)A(x)d x

= −
∫

R

f (x)Λbn(x)A(x)d x

= −
∫

R

f (x)bn−1(x)A(x)d x = 0,

which shows that f ′ ∈Bo(R).

Proposition 1.

(i) For all f in S (R), we have

FΛ(Λ f )(λ) = iλFΛ( f )(λ). (14)

(ii) For all f in S (R), we have

FΛ( f )(λ) =F∆( fe)(λ)+ iλF∆(J fo)(λ), (15)

where F∆ stands for the Fourier transform related to the differential operator ∆, defined

on Se(R) by

F∆(h)(λ) =
∫

R

h(x)ϕλ(x)A(x)d x , λ ∈ R,

fe and fo being respectively the even and odd parts of f given by (3).
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Proof.

(i) Let f ∈ S (R). By (5), (10) and (13),

FΛ(Λ f )(λ) =

∫

R

�
f ′o (x)+

A′(x)
A(x)

fo(x)

�
ϕλ(x)A(x)d x

− 1

iλ

∫

R

f ′e (x)ϕ
′
λ(x)A(x)d x

= κ1 −
κ2

iλ
.

By integrating by parts we get

κ1 =

∫

R

(A(x) fo(x))
′ϕλ(x)d x = −
∫

R

fo(x)ϕ
′
λ(x)A(x)d x

and

κ2 =

∫

R

f ′e (x)ϕ
′
λ(x)A(x)d x

= −
∫

R

fe(x)(A(x)ϕ
′
λ(x))

′d x

= −
∫

R

fe(x)∆ϕλ(x)A(x)d x

= λ2

∫

R

fe(x)ϕλ(x)A(x)d x

by virtue of (11). Hence

κ1 −
κ2

iλ
= iλ

∫

R

�
fe(x)ϕλ(x)− fo(x)

ϕ′
λ
(x)

iλ

�
A(x)d x

= iλ

∫

R

f (x)Φ−λ(x)A(x)d x .

This clearly yields (14).

(ii) If f ∈ Se(R), identity (15) is obvious. Assume f ∈ So(R). By using (10), (11), (13)

and by integrating by parts we obtain

FΛ( f )(λ) = −
1

iλ

∫

R

f (x)ϕ′λ(x)A(x)d x

=
1

iλ

∫

R

J f (x)(A(x)ϕ′λ(x))
′d x
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=
1

iλ

∫

R

J f (x)∆ϕλ(x)A(x)d x

= iλ

∫

R

J f (x)ϕλ(x)A(x)d x

= iλF∆J f (λ),

which completes the proof.

Theorem 2. The generalized Fourier transform FΛ is a topological isomorphism

- from S (R) onto itself;

- fromB(R) ontoH (R).
Proof. By [13] we know that the transform F∆ is a topological isomorphism

- from Se(R) onto itself;

- from Be(R) ontoHe(R).

The result follows then from (15), Lemma 2 and the fact that the operator λ 7→ λ f is a

topological isomorphism

- from Se(R) onto So(R);

- from He(R) ontoHo(R).

Proposition 2.

(i) For all f ∈ S (R),
FΛ( f ) =Fu ◦ t V ( f ), (16)

where Fu denotes the usual Fourier transform on R given by

Fu( f )(λ) =

∫

R

f (x)e−iλx d x .

(ii) For all f ∈ S (R),
d

d x
t V f = t VΛ f . (17)

Proof. Assertion (i) follows by applying the usual Fourier transform Fu to both sides of (6)

and by using the identity

F∆h(λ) =Fu

�
tX h
�
(λ), h ∈ Se(R),

(see [13]). The intertwining relation (17) follows by applying the usual Fourier transform Fu

to both its sides and by using (14) and (16).



W. Chabeh, M. Mourou / Eur. J. Pure Appl. Math, 3 (2010), 958-979 968

Theorem 3. The intertwining operator t V is a topological isomorphism

- from S (R) onto itself;

- fromB(R) ontoW (R).
Proof. We deduce the result from (16), Theorem 2 and the fact that the usual Fourier

transform Fu is a topological isomorphism

- from S (R) onto itself;

- from W (R) ontoH (R).

Definition 2.

(i) The generalized translation operators T x , x ∈ R, are defined on

L2(R,A(x)d x) by the relation

FΛ(T x f )(λ) = Ψλ(x)FΛ( f )(λ). (18)

(ii) The generalized convolution product of two functions f and g in L2(R,A(x)d x) is defined

by

f #g(x) =

∫

R

T x f (−y)g(y)A(y)d y. (19)

Remark 5. Let f and g be in L2(R,A(x)d x). Then

(i) By (18), Lemma 1 and Theorem 1, we deduce that
T x f


2,A
≤
 f


2,A
(20)

for any x ∈ R.

(ii) It follows from (19), (20) and Schwarz inequality that f #g ∈ L∞(R) and
 f #g

∞ ≤
 f


2,A

g


2,A
. (21)

(iii) By virtue of (18), (19) and Theorem 1, f #g may be rewritten as

f #g(x) =

∫

R

FΛ( f )(λ)FΛ(g)(λ)Ψλ(x)dσ(λ). (22)

Proposition 3. Let f ∈ L2(R,A(x)d x) and g ∈ L1∩L2(R,A(x)d x). Then f #g ∈ L2(R,A(x)d x),
 f #g


2,A
≤
 f


2,A

g


1,A
, (23)

and

FΛ( f #g) =FΛ( f )FΛ(g). (24)
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Proof. By Schwarz inequality, FΛ( f )FΛ(g) ∈ L1(R, dσ). Moreover, by Remark 3,

FΛ( f )FΛ(g) ∈ L2(R, dσ) and
FΛ( f )FΛ(g)


2,σ
≤
FΛ( f )


2,σ

g


1,A
. The result follows

then by combining (22) and Theorem 1.

Proposition 4. If f , g ∈ S (R), then f #g ∈ S (R) and

t V ( f #g) = t V f ∗ t V g, (25)

where ∗ denotes the usual convolution on R.

Proof. The fact that f #g ∈ S (R) follows from (24) and Theorem 2. Identity (25) follows

by applying the usual Fourier transform to both its sides and by using (16) and (24).

Remark 6. Notice by (24) and Theorem 2 thatB(R)#S (R)⊂B(R).

3. Generalized Wavelets

Definition 3. We say that a function g ∈ L2(R,A(x)d x) is a generalized wavelet if it satisfies

the admissibility condition :

0< Cg =

∫ ∞

0

|FΛg(aλ)|2 da

a
<∞, (26)

for almost all λ ∈ R.

Remark 7.

(i) The admissibility condition (26) can also be written as

0< Cg =

∫ ∞

0

|FΛ(g)(λ)|2
dλ

λ
=

∫ ∞

0

|FΛ(g)(−λ)|2
dλ

λ
<∞.

(ii) If g is real-valued we have FΛ(g)(−λ) =FΛ(g)(λ), so (26) reduces to

0< Cg =

∫ ∞

0

|FΛ(g)(λ)|2
dλ

λ
<∞.

(iii) If 0 6= g ∈ L2(R,A(x)d x) is real-valued and satisfies

∃ η > 0 such that FΛ(g)(λ)−FΛ(g)(0) = O (λη), as λ→ 0+,

then (26) is equivalent to FΛ(g)(0) = 0.

(iv) According to (iii) and Theorem 2, each real-valued function g in B(R) is a generalized

wavelet.
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Proposition 5.

(i) Let h ∈ L2(R, dσ) and a > 0. Then the function λ 7→ h(aλ) belongs to L2(R, dσ) and we

have

‖h(a·)‖2,σ ≤
k(a)p

a
‖h‖2,σ ,

where

k(a) = sup
λ>0

|c(λ)|
|c(λ/a)| .

(ii) For every a > 0, the dilatation operator

Ha( f )(x) =
1p
a

f

�
x

a

�
, x ∈ R,

is a topological automorphism of L2(R, dσ).

Proof.

(i) Notice first that according to the properties of the function c(λ) given in Theorem 1,

there exist two positive constants m1 and m2 such that

m1

aα+1/2
≤ k(a)≤ m2

aα+1/2
for all a > 0.

We have

‖h(a·)‖22,σ =

∫

R

|h(aλ)|2 dλ

|c(|λ|)|2

=
1

a

∫

R

|h(s)|2 |c(|s|)|
2

|c(|s|/a)|2
ds

|c(|s|)|2

≤ k2(a)

a
‖h‖22,σ

(ii) We deduce the result from (i).

Proposition 6. Let g ∈ L2(R,A(x)d x) and a > 0. Then there exists a function ga ∈ L2(R,A(x)d x)

(and only one) such that

FΛ(ga)(λ) =FΛ(g)(aλ) (27)

for almost every λ ∈ R. This function is given by the relation

ga =
1p
a
F−1
Λ ◦Ha−1 ◦FΛ(g) (28)

and satisfies
ga


2,A
≤ k(a)p

a

g


2,A
.
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Proof. The result follows by combining Theorem 1 and Proposition 5.

Remark 8. For A(x) = |x |2α+1, α > −1/2, the function ga, a > 0, is given by

ga(x) =
1

a2α+2
g

�
x

a

�
, x ∈ R.

Proposition 7. Let g be in S (R). Then for all a > 0, the function ga belongs to S (R) and we

have the relation

ga =
1p
a

t V−1 ◦ Ha ◦ t V (g). (29)

Proof. The result follows from (16), (28), Theorem 2, and the fact thatFu◦Ha = Ha−1◦Fu.

Notation. For a function g in L2(R,A(x)d x) and for (a, b) ∈ ]0,∞[×R we write

ga,b(x) :=
p

a T−b ga(x), (30)

where T−b are the generalized translation operators given by (18).

Definition 4. Let g ∈ L2(R,A(x)d x) be a generalized wavelet. The generalized continuous

wavelet transform Φg is defined for regular functions f on R by :

Φg( f )(a, b) =

∫

R

f (x)ga,b(x)A(x)d x .

This transform can also be written in the form

Φg( f )(a, b) =
p

a f #fga(b), (31)

where # is the generalized convolution product given by (19), and ega(x) = ga(−x), x ∈ R.

Lemma 3. For all f , g ∈ L2(R,A(x)d x) and all h ∈ S (R) we have the identity

∫

R

f #g(x)F−1
Λ (h)(x)A(x)d x =

∫

R

FΛ( f )(λ)FΛ(g)(λ)h−(λ) dσ(λ)

where h−(λ) = h(−λ), λ ∈ R.

Proof. Fix g ∈ L2(R,A(x)d x) and h ∈ S (R). For f ∈ L2(R,A(x)d x) put

S1( f ) =

∫

R

f #g(x)F−1
Λ (h)(x)A(x)d x

and

S2( f ) =

∫

R

FΛ( f )(λ)FΛ(g)(λ)h−(λ)dσ(λ).
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In view of Proposition 3 and Theorem 1, we see that S1( f ) = S2( f ) for each

f ∈ L1 ∩ L2(R,A(x)d x). Moreover, by using (21), Schwarz inequality and Theorem 1 we get

|S1( f )| ≤
 f #g

∞
F−1

Λ (h)


1,A
≤
 f


2,A

g


2,A

F−1
Λ (h)


1,A

and

|S2( f )| ≤
FΛ( f )FΛ(g)


1,σ
‖h‖∞

≤
FΛ( f )


2,σ

FΛ(g)


2,σ
‖h‖∞

≤
 f


2,A

g


2,A
‖h‖∞ ,

which shows that the linear functionals S1 and S2 are bounded on L2(R,A(x)d x). Therefore

S1 ≡ S2, and the lemma is proved.

Lemma 4. Let f1, f2 ∈ L2(R,A(x)d x). Then f1# f2 ∈ L2(R,A(x)d x) if and only if

FΛ( f1)FΛ( f2) ∈ L2(R, dσ) and we have

FΛ( f1# f2) =FΛ( f1)FΛ( f2)

in the L2−case.

Proof. Suppose f1# f2 ∈ L2(R,A(x)d x). By Lemma 3 and Theorem 1, we have for any

h ∈ S (R),
∫

R

FΛ( f1)(λ)FΛ( f2)(λ)h(λ) dσ(λ) =
∫

R

f1# f2(x)F−1
Λ (h

−)(x) A(x)d x

=

∫

R

f1# f2(x)F−1
Λ

�
h
�
(x)A(x)d x

=

∫

R

FΛ( f1# f2)(λ)h(λ) dσ(λ),

which shows that FΛ( f1)FΛ( f2) = FΛ( f1# f2). Conversely, if FΛ( f1)FΛ( f2) ∈ L2(R, dσ),

then by Lemma 3 and Theorem 1, we have for any h ∈ S (R),
∫

R

f1# f2(x)F−1
Λ (h)(x)A(x)d x =

∫

R

FΛ( f1)(λ)FΛ( f2)(λ)eh(λ) dσ(λ)

=

∫

R

F−1
Λ [FΛ( f1)FΛ( f2)](x)F−1

Λ (h)(x)A(x)d x ,

which shows, in view of Theorem 2, that f1# f2 = F−1
Λ [FΛ( f1)FΛ( f2)]. This achieves the

proof.

A combination of Lemma 4 and Theorem 1 gives us the following.



W. Chabeh, M. Mourou / Eur. J. Pure Appl. Math, 3 (2010), 958-979 973

Lemma 5. Let f1, f2 ∈ L2(R,A(x)d x). Then

∫

R

| f1# f2(x)|2A(x)d x =

∫

R

|FΛ( f1)(λ)|2|FΛ( f2)(λ)|2dσ(λ)

where both sides are finite or infinite.

Theorem 4. Let g ∈ L2(R,A(x)d x) be a generalized wavelet. Then for all f ∈ L2(R,A(x)d x),

we have the Plancherel formula

∫

R

| f (x)|2A(x)d x =
1

Cg

∫ ∞

0

∫

R

|Φg( f )(a, b)|2A(b)d b
da

a2
.

Proof. Using (26), (27), (31), Fubini’s Theorem and Lemma 5, we have

1

Cg

∫ ∞

0

∫

R

|Φg( f )(a, b)|2A(b)d b
da

a2
=

=
1

Cg

∫ ∞

0

�∫

R

| f #ega(b)|2A(b)d b

�
da

a

=
1

Cg

∫ ∞

0

�∫

R

|FΛ( f )(λ)|2|FΛ(g)(aλ)|2dσ(λ)

�
da

a

=

∫

R

|FΛ( f )(λ)|2
�

1

Cg

∫ ∞

0

|FΛ(g)(aλ)|2
da

a

�
dσ(λ)

=

∫

R

|FΛ( f )(λ)|2dσ(λ)

The result is now a direct consequence of Theorem 1.

Theorem 5. Let g ∈ L2(R,A(x)d x) be a generalized wavelet. Then for f ∈ L1 ∩ L2(R,A(x)d x)

such that FΛ( f ) ∈ L1(R, dσ), we have

f (x) =
1

Cg

∫ ∞

0

�∫

R

Φg( f )(a, b)ga,b(x)A(b)d b

�
da

a2
, a.e.,

where, for each x ∈ R, both the inner integral and the outer integral are absolutely convergent,

but possibly not the double integral.

Proof. Put

I (a, x) =

∫

R

Φg( f )(a, b)ga,b(x)A(b)d b

and

J (x) = 1

Cg

∫ ∞

0

I (a, x)
da

a2
.
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By (30) and (31) we have

I (a, x) = a

∫

R

f # g̃a(b) T
−x ega(b)A(b)d b.

From (20), (23) and Schwarz inequality we deduce that the integral I (a, x) is absolutely

convergent. On the other hand, by (18), (24) and (27),

FΛ( f #ega)(λ) =FΛ( f )(λ)FΛ(g)(aλ)

and

FΛ(T−x g̃a)(λ) = Ψλ(−x)FΛ(g)(aλ).
So using Theorem 1 we obtain

I (a, x) = a

∫

R

FΛ( f )(λ)Ψλ(x)|FΛ(g)(aλ)|2dσ(λ).

In particular, this implies that

1

Cg

∫ ∞

0

|I (a, x)| da

a2
≤
∫

R

|FΛ( f )(λ)|
�

1

Cg

∫ ∞

0

|FΛ(g)(aλ)|2
da

a

�
dσ(λ)

=
FΛ( f )


1,σ
<∞,

that is, the integral J (x) is absolutely convergent. Finally, using Fubini’s theorem we get

J (x) = 1

Cg

∫ ∞

0

�∫

R

FΛ( f )(λ)|FΛ(g)(aλ)|2Ψλ(x)dσ(λ)
�

da

a

=

∫

R

FΛ( f )(λ)
�

1

Cg

∫ ∞

0

|FΛ(g)(aλ)|2
da

a

�
Ψλ(x)dσ(λ)

=

∫

R

FΛ( f )(λ)Ψλ(x)dσ(λ),

which ends the proof in view of Theorem 1.

4. Inversion of the Intertwining Operators Using Generalized Wavelets

In this section we suppose that the function |c(λ)|−2 is C∞ on ]0,∞[, and for all n ∈ N :

(i) dn/dλn|c(λ)|−2 6= 0 on ]0,∞[;
(ii) ∃ pn ∈ N and kn > 0 such that dn/dλn|c(λ)|−2 ≤ knλ

pn for λ ≥ 1;

(iii) dn/dλn|c(λ)|−2 ∼0+ anλ
qn , where an ∈ R and qn ∈ Z.
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Remark 9. These conditions are satisfied in the Dunkl operator case.

Proposition 8. The operatorK (resp.M ) defined by

K ( f ) =F−1
u

�
2π |c(|λ|)|−2Fu( f )

�
(32)

�
resp.M ( f ) =F−1

Λ

�
2π |c(|λ|)|−2FΛ( f )

��
(33)

is a topological automorphism of W (R) (resp. B(R)).

Proof. Clearly, the mapping f 7→ 2π |c(λ)|−2 f is a topological automorphism of H (R),
and its inverse is given by f 7−→ 1

2π
|c(|λ|)|2 f . We deduce the result from Theorem 2 and the

fact that the usual Fourier transform Fu is a topological isomorphism fromW (R) ontoH (R).

Proposition 9. For f inB(R), we have

M ( f ) = t V
−1 ◦K ◦ t V ( f ). (34)

Proof. By (16), (32) and (33),

M ( f ) = F−1
Λ

�
2π |c(|λ|)|−2FΛ( f )

�

= t V
−1 ◦F−1

u

�
2π |c(|λ|)|−2Fu ◦ t V ( f )

�

= t V
−1 ◦K ◦ t V ( f ).

Proposition 10.

(i) For all f in W (R) and g in S (R), we have

K ( f ∗ g) =K ( f ) ∗ g .

(ii) For all f inB(R) and g in S (R), we have

M ( f #g) =M ( f )#g .

Proof. We have

K ( f ∗ g) = F−1
u

�
2π |c(|λ|)|−2Fu( f ∗ g)

�

= F−1
u

�
2π |c(|λ|)|−2Fu( f )Fu(g)

�

=
¦
F−1

u

�
2π |c(|λ|)|−2Fu( f )

�©
∗ g

= K ( f ) ∗ g

and

M ( f #g) = F−1
Λ

�
2π |c(|λ|)|−2FΛ( f #g)

�
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= F−1
Λ

�
2π |c(|λ|)|−2FΛ( f )FΛ(g)

�

=
¦
F−1
Λ

�
2π |c(|λ|)|−2FΛ( f )

�©
#g

= M ( f )#g,

which ends the proof.

Theorem 6. 1. The intertwining operator V is a topological isomorphism from W (R) onto

B(R).
2. We have the following inverse formulas for V and t V :

(a) For f ∈B(R),
f = V K t V ( f ); (35)

f =M V t V ( f ). (36)

(b) For f ∈W (R),
f =K t V V ( f ); (37)

f = t VM V ( f ). (38)

Proof. Let f ∈B(R). From (12), (16) and Theorem 1 we have for all x ∈ R,

f (x) =

∫

R

FΛ( f )(λ)Ψλ(x)
dλ

|c(|λ|)|2

= V

�∫

R

FΛ( f )(λ) eiλ· dλ

|c(|λ|)|2
�
(x)

= V

�
1

2π

∫

R

�
2π |c(|λ|)|−2Fu ◦ t V ( f )

�
eiλ·dλ
�
(x)

= VK t V ( f )(x).

This when combined with (34) yields formula (36). By replacing f respectively by V f and
t V−1 f into formulas (35) and (36), we regain identities (37) and (38). From (35), Propo-

sition 8 and Theorem 3, we deduce that V is a topological isomorphism from W (R) onto

B(R).
In order to invert the intertwining operators V and t V we shall need some technical lemmas.

Lemma 6. For all f in W (R) and g in S (R), we have

V ( f ∗ g ) = V ( f )# t V
−1
(g). (39)

Proof. By using relations (25), (35), (37) and Proposition 10(i) we have

V−1
�

V ( f )# t V−1(g)
�
= K t V
�

V ( f )# t V−1(g)
�

= K � t V V ( f ) ∗ g
�

=
�K t V V ( f )
� ∗ g

= f ∗ g.
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Definition 5. The classical continuous wavelet transform on R is defined for regular functions

by

Sg( f )(a, b) =

∫

R

f (x) g0
a,b
(x)d x , a > 0, b ∈ R,

where

g0
a,b
(x) :=

1p
a

g

�
x − b

a

�

The function g is a classical wavelet on R, i.e., a function in L2(R, d x) satisfying the admissibility

condition:

0< C0
g =

∫ ∞

0

|Fu(g)(aλ)|2
da

a
<∞,

for almost all λ ∈ R.

A more complete and detailed discussion of the properties of the classical wavelet trans-

form on R can be found in [3], from which we have the following inversion formula.

Theorem 7. Let g ∈ L2(R, d x) be a classical wavelet. If both f and Fu( f ) are in L1(R, d x)

then we have

f (x) =
1

C0
g

∫ ∞

0

�∫

R

Sg( f )(a, b)g0
a,b(x)d b

�
da

a2

for almost every x ∈ R.

Remark 10. According to (16) and Definitions 3, 5, g ∈ S (R) is a generalized wavelet, if and

only if, t V (g) is a classical wavelet and we have:

C0
t V(g)

= Cg . (40)

Lemma 7. Let g ∈W (R) be real-valued. Then for all f ∈ S (R) we have

ΦVK g( f )(a, b) =MV
�

Sg

�
t V f
�
(a, ·)
�
(b).

Proof. Notice that VK g = t V−1 g by virtue of (35). Further, g is a classical wavelet

according to [3]. So it follows from Remark 10 that VK g ∈ B(R) is a generalized wavelet

and

CVK g = C0
g . (41)

Due to (25), (29), (31), (35), (38) and Definition 5 we have

ΦVK g( f )(a, b) =
p

a f #(VK g)ea(b)
=
p

a t V−1
�

t V f ∗ t V (VK g)ea
�
(b)

= t V−1
�

t V f ∗Ha

�
t V VK eg�� (b)

= MV
�

t V f ∗Ha(eg)
�
(b)

= MV
�

Sg

�
t V f
�
(a, ·)
�
(b).
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Lemma 8. Let g ∈B(R) be real-valued. Then for all f ∈W (R), we have

S t V g( f )(a, b) =K t V
�
Φg(V f )(a, ·)
�
(b).

Proof. Observe that by Remarks 7(iv) and 10, t V g is a classical wavelet. Using (29), (31),

(39) and Definition 5 we have

V
�

S t V g( f )(a, ·)
�
(b) = V
�

f ∗ Ha

�
t V eg
��
(b)

=
p

a V
�

f ∗ t V (ega)
�
(b)

=
p

a V ( f )# ega(b)

= Φg(V f )(a, b).

Thus

S t V g( f )(a, b) = V−1 [Φg(V f )(a, ·)](b)
= K t V[Φg(V f )(a, ·)](b)

by virtue of (35).

We can now state our main result.

Theorem 8.

(i) Let g ∈W (R) be real-valued. Then for all f ∈ S (R) we have

t V
−1

f (x) =
1

C0
g

∫ ∞

0

�∫

R

MV [Sg( f )(a, ·)](b) (VK g)a,b(x)A(b)d b

�
da

a2
.

(ii) Let g ∈B(R) be real-valued. Then for all f ∈B(R) we have

V−1 f (x) =
1

Cg

∫ ∞

0

�∫

R

K t V[Φg( f )(a, ·)](b)� t V g
�0

a,b (x)d b

�
da

a2
.

Proof. The result follows by combining Theorems 5, 7, Lemmas 7, 8 and identities (40),

(41).
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