EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 3, No. 6, 2010, 958-979 ISSN 1307-5543 – www.ejpam.com



# Special Issue on Complex Analysis: Theory and Applications dedicated to Professor Hari M. Srivastava, on the occasion of his 70<sup>th</sup> birthday

# Inversion of the Generalized Dunkl Intertwining Operator on $\mathbb{R}$ and its Dual using Generalized Wavelets

W. Chabeh<sup>1</sup>, M.A. Mourou<sup>2,\*</sup>

<sup>1</sup> Preparatory Institute for Engineer Studies of Monastir, University of Monastir, 5019, Monastir, Tunisia

<sup>2</sup> Department of Mathematics, College of Sciences for Girls, University of Dammam, P.O.Box 838, Dammam 31113, Saudi Arabia

**Abstract.** We establish an inversion formula for a continuous wavelet transform associated with a class of singular differential-difference operators on  $\mathbb{R}$ . We apply this result to derive new expressions for the inverse generalized Dunkl intertwining operator and its dual on  $\mathbb{R}$ .

2000 Mathematics Subject Classifications: 42B20, 42C15, 44A15, 44A35

**Key Words and Phrases**: Differential-difference operator, Generalized Dunkl intertwining operator, Generalized continuous wavelet transform.

# 1. Introduction

Consider the second-order singular differential operator on the real line

$$\Delta = \frac{d^2}{dx^2} + \frac{A'(x)}{A(x)}\frac{d}{dx}$$
(1)

where

$$A(x) = |x|^{2\alpha+1} B(x), \quad \alpha > -\frac{1}{2},$$

*B* being a positive  $C^{\infty}$  even function on  $\mathbb{R}$ . In addition we suppose that

\*Corresponding author.

Email addresses: wafa\_chabbah@yahoo.fr (W. Chabeh), mohamed\_ali.mourou@yahoo.fr (M. Mourou)

http://www.ejpam.com

© 2010 EJPAM All rights reserved.

- (i) *A* is increasing on  $[0, \infty[$  and  $\lim_{x\to\infty} A(x) = \infty;$
- (ii) A'/A is decreasing on  $]0,\infty[$  and  $\lim_{x\to\infty} A'(x)/A(x) = 0;$
- (iii) There exists a constant  $\delta > 0$  such that the function  $e^{\delta x}B'(x)/B(x)$  is bounded for large  $x \in ]0, \infty[$  together with its derivatives.

Lions [5] has constructed an automorphism  $\mathscr{X}$  of the space  $\mathscr{E}_e(\mathbb{R})$  of  $C^{\infty}$  even functions on  $\mathbb{R}$ , which intertwines  $\Delta$  and the second derivative operator  $d^2/dx^2$ ; that is, satisfying the intertwining relation

$$\mathscr{X} \frac{d^2}{dx^2} f = \Delta \mathscr{X} f, \qquad f \in \mathscr{E}_e(\mathbb{R}).$$

It is known [14] that the Lions operator  $\mathscr X$  admits the integral representation

$$\mathscr{X}f(x) = \int_0^{|x|} G(x,y)f(y)dy, \quad x \neq 0,$$

where  $G(x, \cdot)$  is an even positive function on  $\mathbb{R}$ , continuous on ] - |x|, |x|[ and supported in [-|x|, |x|]. Furthermore, the dual Lions operator

<sup>t</sup>
$$\mathscr{X}f(y) = \int_{|y|}^{\infty} G(x,y)f(x)A(x)dx, \quad y \in \mathbb{R},$$

is an automorphism of the space  $\mathscr{S}_e(\mathbb{R})$  of even Schwartz functions on  $\mathbb{R}$ , satisfying the intertwining relation

$$\frac{d^2}{dx^2}{}^t\mathscr{X}f = {}^t\mathscr{X}\Delta f, \qquad f \in \mathscr{S}_e(\mathbb{R}).$$

In [8] the second author has introduced on the space  $\mathscr{E}(\mathbb{R})$  of  $C^{\infty}$  functions on  $\mathbb{R}$ , the following operator

$$Vf = \mathscr{X}(f_e) + \frac{d}{dx} \mathscr{X} I(f_o),$$
(2)

where

$$f_e(x) = \frac{f(x) + f(-x)}{2}, \quad f_o(x) = \frac{f(x) - f(-x)}{2}, \tag{3}$$

and *I* is the map defined by  $Ih(x) = \int_0^x h(t)dt$ .

Mainly, he showed that V is an automorphism of  $\mathscr{E}(\mathbb{R})$  satisfying for all  $f \in \mathscr{E}(\mathbb{R})$ ,

$$V\frac{d}{dx}f = \Lambda Vf,\tag{4}$$

where  $\Lambda$  is a first-order differential-difference operator on  $\mathbb{R}$  given by

$$\Lambda f(x) = \frac{df}{dx} + \frac{A'(x)}{A(x)} \left(\frac{f(x) - f(-x)}{2}\right)$$
(5)

For  $A(x) = |x|^{2\alpha+1}$ ,  $\alpha > -1/2$ , the intertwining operator *V* reads

$$V(f)(x) = \frac{\Gamma(\alpha+1)}{\sqrt{\pi}\,\Gamma(\alpha+1/2)} \int_{-1}^{1} f(tx)(1-t^2)^{\alpha-1/2}\,(1+t)\,dt,$$

and referred to as the Dunkl intertwining operator of index  $\alpha + 1/2$  associated with the reflection group  $\mathbb{Z}_2$  on  $\mathbb{R}$ . The differential-difference operator  $\Lambda$  reduces to the one-dimensional Dunkl operator

$$D_{\alpha}f = \frac{df}{dx} + (\alpha + \frac{1}{2})\frac{f(x) - f(-x)}{x}.$$

Such operators have been introduced by Dunkl in connection with a generalization of the classical theory of spherical harmonics (see [1, 11] and the references therein). During the last years, the theory of Dunkl operators has found a wide area of applications in mathematics and mathematical physics. In fact, Dunkl operators have been used in the study of multivariable orthogonality structures with certain reflection symmetries [12, 16]. Moreover, they have been successfully involved in the description and solution of Calogero-Moser-Sutherland type quantum many body systems [4].

Define the dual operator  ${}^{t}V$  of V on the space  $\mathscr{S}(\mathbb{R})$  of Schwartz functions on  $\mathbb{R}$ , by the relation

$${}^{t}Vf = {}^{t}\mathscr{X}(f_{e}) + \frac{d}{dx}{}^{t}\mathscr{X}J(f_{o}),$$
(6)

where J is the map defined by

$$Jh(x) = \int_{-\infty}^{x} h(y) dy, \quad x \in \mathbb{R}.$$
 (7)

In this paper, it is shown that the dual operator  ${}^tV$  is an automorphism of  $\mathscr{S}(\mathbb{R})$  which satisfies the intertwining relation

$$\frac{d}{dx}{}^{t}Vf = {}^{t}V\Lambda f, \qquad f \in \mathscr{S}(\mathbb{R}).$$

Moreover, the following inversion formulas for *V* and <sup>*t*</sup>*V* on certain specific subspaces of  $\mathscr{S}(\mathbb{R})$  are provided

$$f = V \mathscr{K}^{t} V f;$$
  

$$f = \mathscr{M} V^{t} V f;$$
  

$$f = {}^{t} V \mathscr{M} V f;$$
  

$$f = \mathscr{K}^{t} V V f;$$

 $\mathcal{K}$  and  $\mathcal{M}$  being pseudo-differential operators. But the main contribution of this work is the determination of the inverse operators  $V^{-1}$  and  ${}^{t}V^{-1}$  through a continuous wavelet transform on  $\mathbb{R}$  associated with the differential-difference operator  $\Lambda$ . For examples of use of wavelet type transforms in inverse problems the reader is referred to [2, 6, 7, 10, 15] and the references therein. The content of this paper is as follows. In Section 2 we provide some harmonic

analysis results related to the differential-difference operator  $\Lambda$ . Next we list some basic properties of the generalized Dunkl intertwining operator V and its dual  ${}^{t}V$ . In section 3 we introduce the generalized continuous wavelet transform associated with  $\Lambda$ , and we prove for this transform Plancherel and reconstruction formulas. Using generalized wavelets, we obtain in Section 4 formulas which give the inverse operators  $V^{-1}$  and  ${}^{t}V^{-1}$  on Schwartz type spaces.

## 2. Preliminaries

In this section we provide some facts about harmonic analysis related to the differentialdifference operator  $\Lambda$ . We cite here, as briefly as possible, only those properties actually required for the discussion. For more details we refer to [8]. **Notation.** We denote by

-  $\mathscr{S}(\mathbb{R})$  the space of  $C^{\infty}$  functions f on  $\mathbb{R}$ , which are rapidly decreasing together with their derivatives, i.e., such that for all m, n = 0, 1, ...,

$$P_{m,n}(f) = \sup_{x \in \mathbb{R}} (1+x^2)^m \left| \frac{d^n}{dx^n} f(x) \right| < \infty.$$

The topology of  $\mathscr{S}(\mathbb{R})$  is defined by the semi-norms  $P_{m,n}$ , m, n = 0, 1, ...

- $\mathscr{S}_{e}(\mathbb{R})$  (resp.  $\mathscr{S}_{o}(\mathbb{R})$ ) the subspace of  $\mathscr{S}(\mathbb{R})$  consisting of even (rep. odd) functions.
- $\mathscr{B}(\mathbb{R})$  the subspace of  $\mathscr{S}(\mathbb{R})$  consisting of functions f such that for all n = 0, 1, ...,

$$\int_{\mathbb{R}} f(x)b_n(x)A(x)dx = 0,$$

with  $b_n(x) = V\left(\frac{y^n}{n!}\right)(x)$ , *V* being the generalized Dunkl intertwining operator given by (2).

-  $\mathcal{W}(\mathbb{R})$  the subspace of  $\mathcal{S}(\mathbb{R})$  consisting of functions f such that for all n = 0, 1..., f

$$\int_{\mathbb{R}} f(x) x^n dx = 0.$$

-  $\mathcal{H}(\mathbb{R})$  the subspace of  $\mathcal{S}(\mathbb{R})$  consisting of functions f such that for all n = 0, 1...,

$$\frac{d^n}{dx^n}f(0) = 0$$

Put

$$\begin{split} \mathscr{B}_{e}(\mathbb{R}) &= \mathscr{S}_{e}(\mathbb{R}) \cap \mathscr{B}(\mathbb{R}), \quad \mathscr{B}_{o}(\mathbb{R}) = \mathscr{S}_{o}(\mathbb{R}) \cap \mathscr{B}(\mathbb{R}), \\ \mathscr{W}_{e}(\mathbb{R}) &= \mathscr{S}_{e}(\mathbb{R}) \cap \mathscr{W}(\mathbb{R}), \quad \mathscr{W}_{o}(\mathbb{R}) = \mathscr{S}_{o}(\mathbb{R}) \cap \mathscr{W}(\mathbb{R}), \\ \mathscr{H}_{e}(\mathbb{R}) &= \mathscr{S}_{e}(\mathbb{R}) \cap \mathscr{H}(\mathbb{R}), \quad \mathscr{H}_{o}(\mathbb{R}) = \mathscr{S}_{o}(\mathbb{R}) \cap \mathscr{H}(\mathbb{R}). \end{split}$$

#### Remark 1.

(i) Due to our assumptions on the function A there is a positive constant k such that

$$A(x) \sim k |x|^{2\alpha+1}$$
, as  $|x| \to \infty$ .

(ii) It follows from (4) that

$$\Lambda b_{n+1} = b_n \tag{8}$$

for all  $n \in \mathbb{N}$ . Further, by [9] we have for any  $n \in \mathbb{N}$  and  $x \in \mathbb{R}$ ,

$$|b_n(x)| \leq k |x|^n,$$

*k* being a positive constant depending only on *n*.

(iii) It is easily checked that the space  $\mathscr{S}(\mathbb{R})$  is invariant under the differential-difference operator  $\Lambda$ .

For each  $\lambda \in \mathbb{C}$  the differential-difference equation

$$\Lambda u = i\lambda u, \quad u(0) = 1, \tag{9}$$

admits a unique  $C^{\infty}$  solution on  $\mathbb{R}$ , denoted  $\Psi_{\lambda}$  given by

$$\Psi_{\lambda}(x) = \begin{cases} \varphi_{\lambda}(x) + \frac{1}{i\lambda} \frac{d}{dx} \varphi_{\lambda}(x) & \text{if } \lambda \neq 0, \\ 1 & \text{if } \lambda = 0, \end{cases}$$
(10)

where  $\varphi_\lambda$  designates the solution of the differential equation

$$\Delta u = -\lambda^2 u, \quad u(0) = 1, \quad u'(0) = 0, \tag{11}$$

 $\Delta$  being the differential operator defined by (1).

#### Remark 2.

(i) If  $A(x) = |x|^{2\alpha+1}$ ,  $\alpha > -1/2$ , then

$$\Psi_{\lambda}(x) = j_{\alpha}(\lambda x) + \frac{i\lambda x}{2(\alpha+1)} j_{\alpha+1}(\lambda x),$$

where  $j_{\gamma}$  ( $\gamma > -1/2$ ) stands for the normalized spherical Bessel function of index  $\gamma$  given by

$$j_{\gamma}(z) = \Gamma(\gamma+1) \sum_{n=0}^{\infty} \frac{(-1)^n (z/2)^{2n}}{n! \Gamma(n+\gamma+1)} \quad (z \in \mathbb{C}).$$

(ii) It follows by (4) and (9) that

$$\Psi_{\lambda}(x) = V\left(e^{i\lambda \cdot}\right)(x) \tag{12}$$

for all  $x \in \mathbb{R}$  and  $\lambda \in \mathbb{C}$ .

The next statement provides a new estimate for the eigenfunction  $\Psi_{\lambda}(x)$ .

**Lemma 1.** For all  $\lambda$ ,  $x \in \mathbb{R}$ , we have

$$|\Psi_{\lambda}(x)| \leq 1.$$

*Proof.* For  $\lambda = 0$ , the result is obvious. For  $\lambda \neq 0$ , set

$$u_{\lambda}(x) = |\Psi_{\lambda}(x)|^{2} = \left|\varphi_{\lambda}(x) + \frac{1}{i\lambda}\frac{d}{dx}\varphi_{\lambda}(x)\right|^{2} = (\varphi_{\lambda}(x))^{2} + \frac{1}{\lambda^{2}}\left(\frac{d}{dx}\varphi_{\lambda}(x)\right)^{2}.$$

Notice that  $u_{\lambda}(x)$  is even in *x*. By (11),

$$\frac{d}{dx}u_{\lambda}(x) = 2\varphi_{\lambda}(x)\frac{d}{dx}\varphi_{\lambda}(x) + \frac{2}{\lambda^{2}}\frac{d}{dx}\varphi_{\lambda}(x)\frac{d^{2}}{dx^{2}}\varphi_{\lambda}(x) = -\frac{2}{\lambda^{2}}\frac{A'(x)}{A(x)}\left(\frac{d}{dx}\varphi_{\lambda}(x)\right)^{2}.$$

As the function *A* is increasing on  $[0, \infty[$ , it follows that  $u_{\lambda}$  is decreasing on  $]0, \infty[$ . As  $u_{\lambda}(0) = 1$ , we deduce that  $u_{\lambda}(x) \le 1$  for all  $x \ge 0$ . This ends the proof.

**Notation.** For a positive Borel measure  $\mu$  on  $\mathbb{R}$ , and p = 1 or 2, we write  $L^p(\mathbb{R}, d\mu)$  for the class of measurable functions f on  $\mathbb{R}$  for which

$$\|f\|_{p,\mu} = \left(\int_{\mathbb{R}} |f(x)|^p d\mu(x)\right)^{1/p} < \infty.$$

**Definition 1.** The generalized Fourier transform of a function f in  $L^1(\mathbb{R}, A(x)dx)$  is defined by

$$\mathscr{F}_{\Lambda}(f)(\lambda) = \int_{\mathbb{R}} f(x)\Psi_{-\lambda}(x)A(x)dx.$$
(13)

**Remark 3.** Let  $f \in L^1(\mathbb{R}, A(x)dx)$ . By Lemma 1, it follows that  $\mathscr{F}_{\Lambda}(f)$  is continuous on  $\mathbb{R}$  and  $||\mathscr{F}_{\Lambda}(f)||_{\infty} \leq ||f||_{1,A}$ .

An outstanding result about the generalized Fourier transform  $\mathcal{F}$  is as follows.

# Theorem 1. [8]

(i) For every  $f \in L^1 \cap L^2(\mathbb{R}, A(x)dx)$  we have the Plancherel formula

$$\int_{\mathbb{R}} |f(x)|^2 A(x) dx = \int_{\mathbb{R}} |\mathscr{F}_{\Lambda}(f)(\lambda)|^2 d\sigma(\lambda).$$

963

where

$$d\sigma(\lambda) = \frac{d\lambda}{|c(|\lambda|)|^2},$$

c(z) being a continuous functions on  $]0,\infty[$  such that

$$c(z)^{-1} \sim k_1 z^{\alpha + \frac{1}{2}}, \text{ as } z \to \infty,$$
  
 $c(z)^{-1} \sim k_2 z^{\alpha + \frac{1}{2}}, \text{ as } z \to 0,$ 

for some  $k_1, k_2 \in \mathbb{C}$ .

(ii) The generalized Fourier transform  $\mathscr{F}_{\Lambda}$  extends uniquely to a unitary isomorphism from  $L^{2}(\mathbb{R},A(x)dx)$  onto  $L^{2}(\mathbb{R},d\sigma)$ . The inverse transform is given by

$$\mathscr{F}_{\Lambda}^{-1}g(x) = \int_{\mathbb{R}} g(\lambda)\Psi_{\lambda}(x)d\sigma(\lambda)$$

where the integral converges in  $L^2(\mathbb{R}, A(x)dx)$ .

#### Remark 4.

- (i) The tempered measure  $\sigma$  is called the spectral measure associated with the differentialdifference operator  $\Lambda$ .
- (ii) For  $A(x) = |x|^{2\alpha+1}$ ,  $\alpha > -1/2$ , we have

$$c(s) = \frac{2^{\alpha+1} \Gamma(\alpha+1)}{s^{\alpha+1/2}}.$$

The following lemma will play a key role in the remainder of this section.

Lemma 2. The map J, given by (7), is a topological isomorphism

- from  $\mathscr{S}_o(\mathbb{R})$  onto  $\mathscr{S}_e(\mathbb{R})$ ;
- from  $\mathscr{B}_o(\mathbb{R})$  onto  $\mathscr{B}_e(\mathbb{R})$ .

Proof.

(i) It is sufficient to show that J maps continuously  $\mathscr{S}_o(\mathbb{R})$  into  $\mathscr{S}_e(\mathbb{R})$ . Let  $f \in \mathscr{S}_o(\mathbb{R})$ . Clearly Jf is a  $C^{\infty}$  even function on  $\mathbb{R}$ . For  $n = 1, 2, ..., P_{m,n}(Jf) = P_{m,n-1}(f)$ . Moreover,

$$(1+x^2)^m |Jf(x)| \leq (1+x^2)^m \int_{|x|}^{\infty} |f(t)| dt$$

964

$$\leq \int_{|x|}^{\infty} (1+t^2)^m |f(t)| dt$$
  
 
$$\leq P_{m+1,0}(f) \int_{|x|}^{\infty} \frac{dt}{(1+t^2)}$$

Hence  $P_{m,0}(Jf) \le \frac{\pi}{2} P_{m+1,0}(f)$ .

(ii) Let  $f \in \mathscr{B}_o(\mathbb{R})$ . By using (8) and by integrating by parts we have for any n = 0, 1, ...,

$$\int_{\mathbb{R}} Jf(x) b_n(x) A(x) dx = \int_{\mathbb{R}} Jf(x) \Lambda b_{n+1}(x) A(x) dx$$
$$= -\int_{\mathbb{R}} \Lambda Jf(x) b_{n+1}(x) A(x) dx$$
$$= -\int_{\mathbb{R}} f(x) b_{n+1}(x) A(x) dx = 0,$$

which shows that  $Jf \in \mathscr{B}_e(\mathbb{R})$ . Conversely, let  $f \in \mathscr{B}_e(\mathbb{R})$ . Identity (8) together with an integration by parts yields for any n = 1, 2, ...,

$$\int_{\mathbb{R}} f'(x)b_n(x)A(x)dx = \int_{\mathbb{R}} \Lambda f(x)b_n(x)A(x)dx$$
$$= -\int_{\mathbb{R}} f(x)\Lambda b_n(x)A(x)dx$$
$$= -\int_{\mathbb{R}} f(x)b_{n-1}(x)A(x)dx = 0,$$

which shows that  $f' \in \mathscr{B}_o(\mathbb{R})$ .

#### **Proposition 1.**

(i) For all f in  $\mathscr{S}(\mathbb{R})$ , we have

$$\mathscr{F}_{\Lambda}(\Lambda f)(\lambda) = i\lambda \mathscr{F}_{\Lambda}(f)(\lambda). \tag{14}$$

(ii) For all f in  $\mathscr{S}(\mathbb{R})$ , we have

$$\mathscr{F}_{\Lambda}(f)(\lambda) = \mathscr{F}_{\Delta}(f_e)(\lambda) + i\lambda \mathscr{F}_{\Delta}(Jf_o)(\lambda), \tag{15}$$

where  $\mathscr{F}_{\Delta}$  stands for the Fourier transform related to the differential operator  $\Delta$ , defined on  $\mathscr{S}_{e}(\mathbb{R})$  by

$$\mathscr{F}_{\Delta}(h)(\lambda) = \int_{\mathbb{R}} h(x)\varphi_{\lambda}(x)A(x)dx, \quad \lambda \in \mathbb{R},$$

 $f_e$  and  $f_o$  being respectively the even and odd parts of f given by (3).

965

Proof.

(i) Let  $f \in \mathscr{S}(\mathbb{R})$ . By (5), (10) and (13),

$$\begin{aligned} \mathscr{F}_{\Lambda}(\Lambda f)(\lambda) &= \int_{\mathbb{R}} \left( f'_{o}(x) + \frac{A'(x)}{A(x)} f_{o}(x) \right) \varphi_{\lambda}(x) A(x) dx \\ &- \frac{1}{i\lambda} \int_{\mathbb{R}} f'_{e}(x) \varphi'_{\lambda}(x) A(x) dx \\ &= \kappa_{1} - \frac{\kappa_{2}}{i\lambda}. \end{aligned}$$

By integrating by parts we get

$$\kappa_1 = \int_{\mathbb{R}} (A(x)f_o(x))'\varphi_{\lambda}(x)dx = -\int_{\mathbb{R}} f_o(x)\varphi_{\lambda}'(x)A(x)dx$$

and

$$\kappa_{2} = \int_{\mathbb{R}} f_{e}'(x)\varphi_{\lambda}'(x)A(x)dx$$
  
$$= -\int_{\mathbb{R}} f_{e}(x)(A(x)\varphi_{\lambda}'(x))'dx$$
  
$$= -\int_{\mathbb{R}} f_{e}(x)\Delta\varphi_{\lambda}(x)A(x)dx$$
  
$$= \lambda^{2} \int_{\mathbb{R}} f_{e}(x)\varphi_{\lambda}(x)A(x)dx$$

by virtue of (11). Hence

$$\kappa_{1} - \frac{\kappa_{2}}{i\lambda} = i\lambda \int_{\mathbb{R}} \left( f_{e}(x)\varphi_{\lambda}(x) - f_{o}(x)\frac{\varphi_{\lambda}'(x)}{i\lambda} \right) A(x)dx$$
$$= i\lambda \int_{\mathbb{R}} f(x)\Phi_{-\lambda}(x)A(x)dx.$$

This clearly yields (14).

(ii) If  $f \in \mathscr{S}_{e}(\mathbb{R})$ , identity (15) is obvious. Assume  $f \in \mathscr{S}_{o}(\mathbb{R})$ . By using (10), (11), (13) and by integrating by parts we obtain

$$\mathcal{F}_{\Lambda}(f)(\lambda) = -\frac{1}{i\lambda} \int_{\mathbb{R}} f(x)\varphi'_{\lambda}(x)A(x)dx$$
$$= \frac{1}{i\lambda} \int_{\mathbb{R}} Jf(x)(A(x)\varphi'_{\lambda}(x))'dx$$

$$= \frac{1}{i\lambda} \int_{\mathbb{R}} Jf(x) \Delta \varphi_{\lambda}(x) A(x) dx$$
$$= i\lambda \int_{\mathbb{R}} Jf(x) \varphi_{\lambda}(x) A(x) dx$$
$$= i\lambda \mathscr{F}_{\Delta} Jf(\lambda),$$

which completes the proof.

**Theorem 2.** The generalized Fourier transform  $\mathscr{F}_{\Lambda}$  is a topological isomorphism

- from  $\mathscr{S}(\mathbb{R})$  onto itself;
- from  $\mathscr{B}(\mathbb{R})$  onto  $\mathscr{H}(\mathbb{R})$ .

*Proof.* By [13] we know that the transform  $\mathscr{F}_{\Delta}$  is a topological isomorphism

- from  $\mathscr{S}_{e}(\mathbb{R})$  onto itself;
- from  $\mathscr{B}_e(\mathbb{R})$  onto  $\mathscr{H}_e(\mathbb{R})$ . The result follows then from (15), Lemma 2 and the fact that the operator  $\lambda \mapsto \lambda f$  is a topological isomorphism
- from  $\mathscr{S}_{e}(\mathbb{R})$  onto  $\mathscr{S}_{o}(\mathbb{R})$ ;
- from  $\mathscr{H}_{e}(\mathbb{R})$  onto  $\mathscr{H}_{o}(\mathbb{R})$ .

#### **Proposition 2.**

(i) For all  $f \in \mathcal{S}(\mathbb{R})$ ,

$$\mathscr{F}_{\Lambda}(f) = \mathscr{F}_{u} \circ {}^{t}V(f), \tag{16}$$

where  $\mathscr{F}_u$  denotes the usual Fourier transform on  $\mathbb{R}$  given by

$$\mathscr{F}_{u}(f)(\lambda) = \int_{\mathbb{R}} f(x)e^{-i\lambda x}dx$$

(ii) For all  $f \in \mathscr{S}(\mathbb{R})$ ,

$$\frac{d}{dx}{}^{t}Vf = {}^{t}V\Lambda f. \tag{17}$$

*Proof.* Assertion (i) follows by applying the usual Fourier transform  $\mathscr{F}_u$  to both sides of (6) and by using the identity

$$\mathscr{F}_{\Delta}h(\lambda) = \mathscr{F}_{u}({}^{t}\mathscr{X}h)(\lambda), \qquad h \in \mathscr{S}_{e}(\mathbb{R}),$$

(see [13]). The intertwining relation (17) follows by applying the usual Fourier transform  $\mathscr{F}_u$  to both its sides and by using (14) and (16).

**Theorem 3.** The intertwining operator  ${}^{t}V$  is a topological isomorphism

- from  $\mathscr{S}(\mathbb{R})$  onto itself;
- from  $\mathscr{B}(\mathbb{R})$  onto  $\mathscr{W}(\mathbb{R})$ .

*Proof.* We deduce the result from (16), Theorem 2 and the fact that the usual Fourier transform  $\mathscr{F}_u$  is a topological isomorphism

- from  $\mathscr{S}(\mathbb{R})$  onto itself;
- from  $\mathscr{W}(\mathbb{R})$  onto  $\mathscr{H}(\mathbb{R})$ .

#### **Definition 2.**

(i) The generalized translation operators  $T^x$ ,  $x \in \mathbb{R}$ , are defined on  $L^2(\mathbb{R}, A(x)dx)$  by the relation

$$\mathscr{F}_{\Lambda}(T^{x}f)(\lambda) = \Psi_{\lambda}(x)\mathscr{F}_{\Lambda}(f)(\lambda).$$
(18)

(ii) The generalized convolution product of two functions f and g in  $L^2(\mathbb{R}, A(x)dx)$  is defined by

$$f \# g(x) = \int_{\mathbb{R}} T^{x} f(-y) g(y) A(y) dy.$$
(19)

**Remark 5.** Let f and g be in  $L^2(\mathbb{R}, A(x)dx)$ . Then

(i) By (18), Lemma 1 and Theorem 1, we deduce that

$$\|T^{x}f\|_{2,A} \le \|f\|_{2,A}$$
 (20)

for any  $x \in \mathbb{R}$ .

(ii) It follows from (19), (20) and Schwarz inequality that  $f \# g \in L^{\infty}(\mathbb{R})$  and

$$\|f \# g\|_{\infty} \le \|f\|_{2,A} \|g\|_{2,A}.$$
 (21)

(iii) By virtue of (18), (19) and Theorem 1, f # g may be rewritten as

$$f \# g(x) = \int_{\mathbb{R}} \mathscr{F}_{\Lambda}(f)(\lambda) \mathscr{F}_{\Lambda}(g)(\lambda) \Psi_{\lambda}(x) d\sigma(\lambda).$$
(22)

**Proposition 3.** Let  $f \in L^2(\mathbb{R}, A(x)dx)$  and  $g \in L^1 \cap L^2(\mathbb{R}, A(x)dx)$ . Then  $f \# g \in L^2(\mathbb{R}, A(x)dx)$ ,

$$\|f \# g\|_{2,A} \le \|f\|_{2,A} \|g\|_{1,A},$$
 (23)

and

$$\mathscr{F}_{\Lambda}(f \# g) = \mathscr{F}_{\Lambda}(f) \mathscr{F}_{\Lambda}(g).$$
(24)

*Proof.* By Schwarz inequality,  $\mathscr{F}_{\Lambda}(f)\mathscr{F}_{\Lambda}(g) \in L^{1}(\mathbb{R}, d\sigma)$ . Moreover, by Remark 3,  $\mathscr{F}_{\Lambda}(f)\mathscr{F}_{\Lambda}(g) \in L^{2}(\mathbb{R}, d\sigma)$  and  $\|\mathscr{F}_{\Lambda}(f)\mathscr{F}_{\Lambda}(g)\|_{2,\sigma} \leq \|\mathscr{F}_{\Lambda}(f)\|_{2,\sigma} \|g\|_{1,A}$ . The result follows then by combining (22) and Theorem 1.

**Proposition 4.** *If*  $f, g \in \mathcal{S}(\mathbb{R})$ *, then*  $f \# g \in \mathcal{S}(\mathbb{R})$  *and* 

$${}^{t}V(f \# g) = {}^{t}Vf * {}^{t}Vg,$$
(25)

where \* denotes the usual convolution on  $\mathbb{R}$ .

*Proof.* The fact that  $f \# g \in \mathscr{S}(\mathbb{R})$  follows from (24) and Theorem 2. Identity (25) follows by applying the usual Fourier transform to both its sides and by using (16) and (24).

**Remark 6.** Notice by (24) and Theorem 2 that  $\mathscr{B}(\mathbb{R}) \# \mathscr{G}(\mathbb{R}) \subset \mathscr{B}(\mathbb{R})$ .

## 3. Generalized Wavelets

**Definition 3.** We say that a function  $g \in L^2(\mathbb{R}, A(x)dx)$  is a generalized wavelet if it satisfies the admissibility condition :

$$0 < C_g = \int_0^\infty |\mathscr{F}_\Lambda g(a\lambda)|^2 \frac{da}{a} < \infty,$$
(26)

for almost all  $\lambda \in \mathbb{R}$ .

#### Remark 7.

(i) The admissibility condition (26) can also be written as

$$0 < C_g = \int_0^\infty |\mathscr{F}_{\Lambda}(g)(\lambda)|^2 \frac{d\lambda}{\lambda} = \int_0^\infty |\mathscr{F}_{\Lambda}(g)(-\lambda)|^2 \frac{d\lambda}{\lambda} < \infty.$$

(ii) If g is real-valued we have  $\mathscr{F}_{\Lambda}(g)(-\lambda) = \overline{\mathscr{F}_{\Lambda}(g)(\lambda)}$ , so (26) reduces to

$$0 < C_g = \int_0^\infty |\mathscr{F}_{\Lambda}(g)(\lambda)|^2 \frac{d\lambda}{\lambda} < \infty.$$

(iii) If  $0 \neq g \in L^2(\mathbb{R}, A(x)dx)$  is real-valued and satisfies

$$\exists \eta > 0 \quad \text{such that} \quad \mathscr{F}_{\Lambda}(g)(\lambda) - \mathscr{F}_{\Lambda}(g)(0) = \mathscr{O}(\lambda^{\eta}), \quad \text{as } \lambda \to 0^{+},$$

then (26) is equivalent to  $\mathscr{F}_{\Lambda}(g)(0) = 0$ .

(iv) According to (iii) and Theorem 2, each real-valued function g in  $\mathscr{B}(\mathbb{R})$  is a generalized wavelet.

## **Proposition 5.**

(i) Let  $h \in L^2(\mathbb{R}, d\sigma)$  and a > 0. Then the function  $\lambda \mapsto h(a\lambda)$  belongs to  $L^2(\mathbb{R}, d\sigma)$  and we have

$$\|h(a\cdot)\|_{2,\sigma} \leq \frac{k(a)}{\sqrt{a}} \|h\|_{2,\sigma},$$

where

$$k(a) = \sup_{\lambda > 0} \frac{|c(\lambda)|}{|c(\lambda/a)|}.$$

(ii) For every a > 0, the dilatation operator

$$H_a(f)(x) = \frac{1}{\sqrt{a}} f\left(\frac{x}{a}\right), \quad x \in \mathbb{R},$$

is a topological automorphism of  $L^2(\mathbb{R}, d\sigma)$ .

Proof.

(i) Notice first that according to the properties of the function  $c(\lambda)$  given in Theorem 1, there exist two positive constants  $m_1$  and  $m_2$  such that

$$\frac{m_1}{a^{\alpha+1/2}} \le k(a) \le \frac{m_2}{a^{\alpha+1/2}} \quad \text{for all } a > 0.$$

We have

$$\begin{aligned} \|h(a\cdot)\|_{2,\sigma}^{2} &= \int_{\mathbb{R}} |h(a\lambda)|^{2} \frac{d\lambda}{|c(|\lambda|)|^{2}} \\ &= \frac{1}{a} \int_{\mathbb{R}} |h(s)|^{2} \frac{|c(|s|)|^{2}}{|c(|s|/a)|^{2}} \frac{ds}{|c(|s|)|^{2}} \\ &\leq \frac{k^{2}(a)}{a} \|h\|_{2,\sigma}^{2} \end{aligned}$$

(ii) We deduce the result from (i).

**Proposition 6.** Let  $g \in L^2(\mathbb{R}, A(x)dx)$  and a > 0. Then there exists a function  $g_a \in L^2(\mathbb{R}, A(x)dx)$  (and only one) such that

$$\mathscr{F}_{\Lambda}(g_a)(\lambda) = \mathscr{F}_{\Lambda}(g)(a\lambda) \tag{27}$$

for almost every  $\lambda \in \mathbb{R}$ . This function is given by the relation

$$g_a = \frac{1}{\sqrt{a}} \mathscr{F}_{\Lambda}^{-1} \circ H_{a^{-1}} \circ \mathscr{F}_{\Lambda}(g)$$
(28)

and satisfies

$$\left\|g_{a}\right\|_{2,A} \leq \frac{k(a)}{\sqrt{a}} \left\|g\right\|_{2,A}$$

Proof. The result follows by combining Theorem 1 and Proposition 5.

**Remark 8.** For  $A(x) = |x|^{2\alpha+1}$ ,  $\alpha > -1/2$ , the function  $g_a$ , a > 0, is given by

$$g_a(x) = \frac{1}{a^{2\alpha+2}} g\left(\frac{x}{a}\right), \quad x \in \mathbb{R}$$

**Proposition 7.** Let g be in  $\mathscr{S}(\mathbb{R})$ . Then for all a > 0, the function  $g_a$  belongs to  $\mathscr{S}(\mathbb{R})$  and we have the relation

$$g_a = \frac{1}{\sqrt{a}} {}^t V^{-1} \circ H_a \circ {}^t V(g).$$
<sup>(29)</sup>

*Proof.* The result follows from (16), (28), Theorem 2, and the fact that  $\mathscr{F}_u \circ H_a = H_{a^{-1}} \circ \mathscr{F}_u$ . **Notation.** For a function g in  $L^2(\mathbb{R}, A(x)dx)$  and for  $(a, b) \in ]0, \infty[\times \mathbb{R}$  we write

$$g_{a,b}(x) := \sqrt{a} T^{-b} g_a(x),$$
 (30)

where  $T^{-b}$  are the generalized translation operators given by (18).

**Definition 4.** Let  $g \in L^2(\mathbb{R}, A(x)dx)$  be a generalized wavelet. The generalized continuous wavelet transform  $\Phi_g$  is defined for regular functions f on  $\mathbb{R}$  by :

$$\Phi_g(f)(a,b) = \int_{\mathbb{R}} f(x) \overline{g_{a,b}(x)} A(x) dx.$$

This transform can also be written in the form

$$\Phi_g(f)(a,b) = \sqrt{a} f \# \widetilde{g_a}(b), \tag{31}$$

where # is the generalized convolution product given by (19), and  $\tilde{g}_a(x) = \overline{g_a(-x)}, x \in \mathbb{R}$ .

**Lemma 3.** For all  $f, g \in L^2(\mathbb{R}, A(x)dx)$  and all  $h \in \mathcal{S}(\mathbb{R})$  we have the identity

$$\int_{\mathbb{R}} f \# g(x) \mathscr{F}_{\Lambda}^{-1}(h)(x) A(x) dx = \int_{\mathbb{R}} \mathscr{F}_{\Lambda}(f)(\lambda) \mathscr{F}_{\Lambda}(g)(\lambda) h^{-}(\lambda) d\sigma(\lambda)$$

where  $h^{-}(\lambda) = h(-\lambda), \ \lambda \in \mathbb{R}$ .

*Proof.* Fix  $g \in L^2(\mathbb{R}, A(x)dx)$  and  $h \in \mathscr{S}(\mathbb{R})$ . For  $f \in L^2(\mathbb{R}, A(x)dx)$  put

$$S_1(f) = \int_{\mathbb{R}} f \# g(x) \mathscr{F}_{\Lambda}^{-1}(h)(x) A(x) dx$$

and

$$S_2(f) = \int_{\mathbb{R}} \mathscr{F}_{\Lambda}(f)(\lambda) \mathscr{F}_{\Lambda}(g)(\lambda) h^{-}(\lambda) d\sigma(\lambda).$$

In view of Proposition 3 and Theorem 1, we see that  $S_1(f) = S_2(f)$  for each  $f \in L^1 \cap L^2(\mathbb{R}, A(x)dx)$ . Moreover, by using (21), Schwarz inequality and Theorem 1 we get

$$|S_{1}(f)| \leq \left\| f \# g \right\|_{\infty} \left\| \mathscr{F}_{\Lambda}^{-1}(h) \right\|_{1,A} \leq \left\| f \right\|_{2,A} \left\| g \right\|_{2,A} \left\| \mathscr{F}_{\Lambda}^{-1}(h) \right\|_{1,A}$$

and

$$\begin{aligned} |S_{2}(f)| &\leq \left\| \mathscr{F}_{\Lambda}(f) \mathscr{F}_{\Lambda}(g) \right\|_{1,\sigma} \|h\|_{\infty} \\ &\leq \left\| \mathscr{F}_{\Lambda}(f) \right\|_{2,\sigma} \left\| \mathscr{F}_{\Lambda}(g) \right\|_{2,\sigma} \|h\|_{\infty} \\ &\leq \left\| f \right\|_{2,\Lambda} \left\| g \right\|_{2,\Lambda} \|h\|_{\infty}, \end{aligned}$$

which shows that the linear functionals  $S_1$  and  $S_2$  are bounded on  $L^2(\mathbb{R}, A(x)dx)$ . Therefore  $S_1 \equiv S_2$ , and the lemma is proved.

**Lemma 4.** Let  $f_1, f_2 \in L^2(\mathbb{R}, A(x)dx)$ . Then  $f_1 \# f_2 \in L^2(\mathbb{R}, A(x)dx)$  if and only if  $\mathscr{F}_{\Lambda}(f_1) \mathscr{F}_{\Lambda}(f_2) \in L^2(\mathbb{R}, d\sigma)$  and we have

$$\mathscr{F}_{\Lambda}(f_1 \# f_2) = \mathscr{F}_{\Lambda}(f_1) \mathscr{F}_{\Lambda}(f_2)$$

in the  $L^2$ -case.

*Proof.* Suppose  $f_1 # f_2 \in L^2(\mathbb{R}, A(x) dx)$ . By Lemma 3 and Theorem 1, we have for any  $h \in \mathscr{S}(\mathbb{R})$ ,

$$\int_{\mathbb{R}} \mathscr{F}_{\Lambda}(f_{1})(\lambda) \mathscr{F}_{\Lambda}(f_{2})(\lambda) h(\lambda) d\sigma(\lambda) = \int_{\mathbb{R}} f_{1} \# f_{2}(x) \mathscr{F}_{\Lambda}^{-1}(h^{-})(x) A(x) dx$$
$$= \int_{\mathbb{R}} f_{1} \# f_{2}(x) \overline{\mathscr{F}_{\Lambda}^{-1}(\overline{h})(x)} A(x) dx$$
$$= \int_{\mathbb{R}} \mathscr{F}_{\Lambda}(f_{1} \# f_{2})(\lambda) h(\lambda) d\sigma(\lambda),$$

which shows that  $\mathscr{F}_{\Lambda}(f_1)\mathscr{F}_{\Lambda}(f_2) = \mathscr{F}_{\Lambda}(f_1 \# f_2)$ . Conversely, if  $\mathscr{F}_{\Lambda}(f_1)\mathscr{F}_{\Lambda}(f_2) \in L^2(\mathbb{R}, d\sigma)$ , then by Lemma 3 and Theorem 1, we have for any  $h \in \mathscr{S}(\mathbb{R})$ ,

$$\begin{split} \int_{\mathbb{R}} f_1 \# f_2(x) \mathscr{F}_{\Lambda}^{-1}(h)(x) A(x) dx &= \int_{\mathbb{R}} \mathscr{F}_{\Lambda}(f_1)(\lambda) \mathscr{F}_{\Lambda}(f_2)(\lambda) \overline{\widetilde{h}(\lambda)} \, d\sigma(\lambda) \\ &= \int_{\mathbb{R}} \mathscr{F}_{\Lambda}^{-1} [\mathscr{F}_{\Lambda}(f_1) \mathscr{F}_{\Lambda}(f_2)](x) \mathscr{F}_{\Lambda}^{-1}(h)(x) A(x) dx, \end{split}$$

which shows, in view of Theorem 2, that  $f_1 # f_2 = \mathscr{F}_{\Lambda}^{-1}[\mathscr{F}_{\Lambda}(f_1)\mathscr{F}_{\Lambda}(f_2)]$ . This achieves the proof.

A combination of Lemma 4 and Theorem 1 gives us the following.

**Lemma 5.** Let  $f_1, f_2 \in L^2(\mathbb{R}, A(x)dx)$ . Then

$$\int_{\mathbb{R}} |f_1 \# f_2(x)|^2 A(x) dx = \int_{\mathbb{R}} |\mathscr{F}_{\Lambda}(f_1)(\lambda)|^2 |\mathscr{F}_{\Lambda}(f_2)(\lambda)|^2 d\sigma(\lambda)$$

where both sides are finite or infinite.

**Theorem 4.** Let  $g \in L^2(\mathbb{R}, A(x)dx)$  be a generalized wavelet. Then for all  $f \in L^2(\mathbb{R}, A(x)dx)$ , we have the Plancherel formula

$$\int_{\mathbb{R}} |f(x)|^2 A(x) dx = \frac{1}{C_g} \int_0^\infty \int_{\mathbb{R}} |\Phi_g(f)(a,b)|^2 A(b) db \frac{da}{a^2}.$$

Proof. Using (26), (27), (31), Fubini's Theorem and Lemma 5, we have

$$\frac{1}{C_g} \int_0^\infty \int_{\mathbb{R}} |\Phi_g(f)(a,b)|^2 A(b) db \frac{da}{a^2} =$$

$$= \frac{1}{C_g} \int_0^\infty \left( \int_{\mathbb{R}} |f \# \widetilde{g}_a(b)|^2 A(b) db \right) \frac{da}{a}$$

$$= \frac{1}{C_g} \int_0^\infty \left( \int_{\mathbb{R}} |\mathscr{F}_\Lambda(f)(\lambda)|^2 |\mathscr{F}_\Lambda(g)(a\lambda)|^2 d\sigma(\lambda) \right) \frac{da}{a}$$

$$= \int_{\mathbb{R}} |\mathscr{F}_\Lambda(f)(\lambda)|^2 \left( \frac{1}{C_g} \int_0^\infty |\mathscr{F}_\Lambda(g)(a\lambda)|^2 \frac{da}{a} \right) d\sigma(\lambda)$$

$$= \int_{\mathbb{R}} |\mathscr{F}_\Lambda(f)(\lambda)|^2 d\sigma(\lambda)$$

The result is now a direct consequence of Theorem 1.

**Theorem 5.** Let  $g \in L^2(\mathbb{R}, A(x)dx)$  be a generalized wavelet. Then for  $f \in L^1 \cap L^2(\mathbb{R}, A(x)dx)$  such that  $\mathscr{F}_{\Lambda}(f) \in L^1(\mathbb{R}, d\sigma)$ , we have

$$f(x) = \frac{1}{C_g} \int_0^\infty \left( \int_{\mathbb{R}} \Phi_g(f)(a,b) g_{a,b}(x) A(b) db \right) \frac{da}{a^2}, \quad \text{a.e.},$$

where, for each  $x \in \mathbb{R}$ , both the inner integral and the outer integral are absolutely convergent, but possibly not the double integral.

Proof. Put

$$\mathscr{I}(a,x) = \int_{\mathbb{R}} \Phi_g(f)(a,b) g_{a,b}(x) A(b) db$$

and

$$\mathscr{J}(x) = \frac{1}{C_g} \int_0^\infty \mathscr{I}(a, x) \frac{da}{a^2}.$$

By (30) and (31) we have

$$\mathscr{I}(a,x) = a \int_{\mathbb{R}} f \# \tilde{g}_a(b) \overline{T^{-x} \, \tilde{g}_a(b)} A(b) db.$$

From (20), (23) and Schwarz inequality we deduce that the integral  $\mathscr{I}(a, x)$  is absolutely convergent. On the other hand, by (18), (24) and (27),

$$\mathscr{F}_{\Lambda}(f \# \widetilde{g}_a)(\lambda) = \mathscr{F}_{\Lambda}(f)(\lambda) \overline{\mathscr{F}_{\Lambda}(g)(a\lambda)}$$

and

$$\mathscr{F}_{\Lambda}(T^{-x}\tilde{g}_{a})(\lambda) = \Psi_{\lambda}(-x)\overline{\mathscr{F}_{\Lambda}(g)(a\lambda)}.$$

So using Theorem 1 we obtain

$$\mathscr{I}(a,x) = a \int_{\mathbb{R}} \mathscr{F}_{\Lambda}(f)(\lambda) \Psi_{\lambda}(x) |\mathscr{F}_{\Lambda}(g)(a\lambda)|^2 d\sigma(\lambda).$$

In particular, this implies that

$$\begin{aligned} \frac{1}{C_g} \int_0^\infty |\mathscr{I}(a,x)| \frac{da}{a^2} &\leq \int_{\mathbb{R}} |\mathscr{F}_{\Lambda}(f)(\lambda)| \left(\frac{1}{C_g} \int_0^\infty |\mathscr{F}_{\Lambda}(g)(a\lambda)|^2 \frac{da}{a}\right) d\sigma(\lambda) \\ &= \left\| \mathscr{F}_{\Lambda}(f) \right\|_{1,\sigma} < \infty, \end{aligned}$$

that is, the integral  $\mathcal{J}(x)$  is absolutely convergent. Finally, using Fubini's theorem we get

$$\begin{split} \mathscr{J}(x) &= \frac{1}{C_g} \int_0^\infty \left( \int_{\mathbb{R}} \mathscr{F}_{\Lambda}(f)(\lambda) |\mathscr{F}_{\Lambda}(g)(a\lambda)|^2 \Psi_{\lambda}(x) d\sigma(\lambda) \right) \frac{da}{a} \\ &= \int_{\mathbb{R}} \mathscr{F}_{\Lambda}(f)(\lambda) \left( \frac{1}{C_g} \int_0^\infty |\mathscr{F}_{\Lambda}(g)(a\lambda)|^2 \frac{da}{a} \right) \Psi_{\lambda}(x) d\sigma(\lambda) \\ &= \int_{\mathbb{R}} \mathscr{F}_{\Lambda}(f)(\lambda) \Psi_{\lambda}(x) d\sigma(\lambda), \end{split}$$

which ends the proof in view of Theorem 1.

# 4. Inversion of the Intertwining Operators Using Generalized Wavelets

In this section we suppose that the function  $|c(\lambda)|^{-2}$  is  $C^{\infty}$  on  $]0, \infty[$ , and for all  $n \in \mathbb{N}$ :

- (i)  $d^n/d\lambda^n |c(\lambda)|^{-2} \neq 0$  on  $]0,\infty[;$
- (ii)  $\exists p_n \in \mathbb{N}$  and  $k_n > 0$  such that  $d^n/d\lambda^n |c(\lambda)|^{-2} \le k_n \lambda^{p_n}$  for  $\lambda \ge 1$ ;
- (iii)  $d^n/d\lambda^n |c(\lambda)|^{-2} \sim_{0^+} a_n \lambda^{q_n}$ , where  $a_n \in \mathbb{R}$  and  $q_n \in \mathbb{Z}$ .

Remark 9. These conditions are satisfied in the Dunkl operator case.

**Proposition 8.** The operator  $\mathcal{K}$  (resp.  $\mathcal{M}$ ) defined by

$$\mathscr{K}(f) = \mathscr{F}_{u}^{-1} \left[ 2\pi |c(|\lambda|)|^{-2} \mathscr{F}_{u}(f) \right]$$
(32)

$$\left(\operatorname{resp.} \mathcal{M}(f) = \mathscr{F}_{\Lambda}^{-1} \left[ 2\pi |c(|\lambda|)|^{-2} \mathscr{F}_{\Lambda}(f) \right] \right)$$
(33)

is a topological automorphism of  $\mathscr{W}(\mathbb{R})$  (resp.  $\mathscr{B}(\mathbb{R})$ ).

*Proof.* Clearly, the mapping  $f \mapsto 2\pi |c(\lambda)|^{-2} f$  is a topological automorphism of  $\mathscr{H}(\mathbb{R})$ , and its inverse is given by  $f \mapsto \frac{1}{2\pi} |c(|\lambda|)|^2 f$ . We deduce the result from Theorem 2 and the fact that the usual Fourier transform  $\mathscr{F}_u$  is a topological isomorphism from  $\mathscr{W}(\mathbb{R})$  onto  $\mathscr{H}(\mathbb{R})$ .

**Proposition 9.** For f in  $\mathscr{B}(\mathbb{R})$ , we have

$$\mathscr{M}(f) = {}^{t}V^{-1} \circ \mathscr{K} \circ {}^{t}V(f).$$
(34)

Proof. By (16), (32) and (33),

$$\begin{aligned} \mathcal{M}(f) &= \mathscr{F}_{\Lambda}^{-1} \left[ 2\pi |c(|\lambda|)|^{-2} \mathscr{F}_{\Lambda}(f) \right] \\ &= {}^{t} V^{-1} \circ \mathscr{F}_{u}^{-1} \left[ 2\pi |c(|\lambda|)|^{-2} \mathscr{F}_{u} \circ {}^{t} V(f) \right] \\ &= {}^{t} V^{-1} \circ \mathscr{K} \circ {}^{t} V(f). \end{aligned}$$

#### **Proposition 10.**

(i) For all f in  $\mathcal{W}(\mathbb{R})$  and g in  $\mathcal{S}(\mathbb{R})$ , we have

$$\mathscr{K}(f \ast g) = \mathscr{K}(f) \ast g.$$

(ii) For all f in  $\mathscr{B}(\mathbb{R})$  and g in  $\mathscr{S}(\mathbb{R})$ , we have

$$\mathcal{M}(f \# g) = \mathcal{M}(f) \# g.$$

Proof. We have

$$\begin{aligned} \mathscr{K}(f * g) &= \mathscr{F}_u^{-1} \left[ 2\pi |c(|\lambda|)|^{-2} \mathscr{F}_u(f * g) \right] \\ &= \mathscr{F}_u^{-1} \left[ 2\pi |c(|\lambda|)|^{-2} \mathscr{F}_u(f) \mathscr{F}_u(g) \right] \\ &= \left\{ \mathscr{F}_u^{-1} \left[ 2\pi |c(|\lambda|)|^{-2} \mathscr{F}_u(f) \right] \right\} * g \\ &= \mathscr{K}(f) * g \end{aligned}$$

and

$$\mathcal{M}(f \# g) = \mathscr{F}_{\Lambda}^{-1} \left[ 2\pi |c(|\lambda|)|^{-2} \mathscr{F}_{\Lambda}(f \# g) \right]$$

$$= \mathscr{F}_{\Lambda}^{-1} \left[ 2\pi |c(|\lambda|)|^{-2} \mathscr{F}_{\Lambda}(f) \mathscr{F}_{\Lambda}(g) \right] \\ = \left\{ \mathscr{F}_{\Lambda}^{-1} \left[ 2\pi |c(|\lambda|)|^{-2} \mathscr{F}_{\Lambda}(f) \right] \right\} \#g \\ = \mathscr{M}(f) \#g,$$

which ends the proof.

**Theorem 6.** 1. The intertwining operator V is a topological isomorphism from  $\mathscr{W}(\mathbb{R})$  onto  $\mathscr{B}(\mathbb{R})$ .

- 2. We have the following inverse formulas for V and  ${}^{t}V$ :
  - (a) For  $f \in \mathscr{B}(\mathbb{R})$ ,

$$f = V \mathscr{K}^{t} V(f); \tag{35}$$

$$f = \mathscr{M} V^{t} V(f).$$
(36)

(b) For  $f \in \mathcal{W}(\mathbb{R})$ ,

$$f = \mathscr{K}^{t} V V(f); \tag{37}$$

$$f = {}^{t}V \mathscr{M} V(f).$$
(38)

*Proof.* Let  $f \in \mathscr{B}(\mathbb{R})$ . From (12), (16) and Theorem 1 we have for all  $x \in \mathbb{R}$ ,

$$\begin{split} f(x) &= \int_{\mathbb{R}} \mathscr{F}_{\Lambda}(f)(\lambda) \Psi_{\lambda}(x) \frac{d\lambda}{|c(|\lambda|)|^{2}} \\ &= V\left(\int_{\mathbb{R}} \mathscr{F}_{\Lambda}(f)(\lambda) e^{i\lambda \cdot} \frac{d\lambda}{|c(|\lambda|)|^{2}}\right)(x) \\ &= V\left(\frac{1}{2\pi} \int_{\mathbb{R}} \left[2\pi |c(|\lambda|)|^{-2} \mathscr{F}_{u} \circ {}^{t}V(f)\right] e^{i\lambda \cdot} d\lambda\right)(x) \\ &= V \mathscr{K}^{t}V(f)(x). \end{split}$$

This when combined with (34) yields formula (36). By replacing f respectively by Vf and  ${}^{t}V^{-1}f$  into formulas (35) and (36), we regain identities (37) and (38). From (35), Proposition 8 and Theorem 3, we deduce that V is a topological isomorphism from  $\mathcal{W}(\mathbb{R})$  onto  $\mathscr{B}(\mathbb{R})$ .

In order to invert the intertwining operators *V* and <sup>*t*</sup>*V* we shall need some technical lemmas. **Lemma 6.** For all f in  $\mathscr{W}(\mathbb{R})$  and g in  $\mathscr{S}(\mathbb{R})$ , we have

$$V(f * g) = V(f) \# {}^{t}V^{-1}(g).$$
(39)

Proof. By using relations (25), (35), (37) and Proposition 10(i) we have

$$V^{-1} \left[ V(f) \# {}^{t} V^{-1}(g) \right] = \mathscr{K}^{t} V \left[ V(f) \# {}^{t} V^{-1}(g) \right]$$
  
$$= \mathscr{K} \left[ {}^{t} V V(f) * g \right]$$
  
$$= \left[ \mathscr{K}^{t} V V(f) \right] * g$$
  
$$= f * g.$$

**Definition 5.** The classical continuous wavelet transform on  $\mathbb{R}$  is defined for regular functions by

$$S_g(f)(a,b) = \int_{\mathbb{R}} f(x) \overline{g_{a,b}^0(x)} dx, \quad a > 0, \ b \in \mathbb{R},$$

where

$$g_{a,b}^{0}(x) := \frac{1}{\sqrt{a}}g\left(\frac{x-b}{a}\right)$$

The function g is a classical wavelet on  $\mathbb{R}$ , i.e., a function in  $L^2(\mathbb{R}, dx)$  satisfying the admissibility condition:

$$0 < C_g^0 = \int_0^\infty |\mathscr{F}_u(g)(a\lambda)|^2 \frac{da}{a} < \infty,$$

for almost all  $\lambda \in \mathbb{R}$ .

A more complete and detailed discussion of the properties of the classical wavelet transform on  $\mathbb{R}$  can be found in [3], from which we have the following inversion formula.

**Theorem 7.** Let  $g \in L^2(\mathbb{R}, dx)$  be a classical wavelet. If both f and  $\mathscr{F}_u(f)$  are in  $L^1(\mathbb{R}, dx)$  then we have

$$f(x) = \frac{1}{C_g^0} \int_0^\infty \left( \int_{\mathbb{R}} S_g(f)(a,b) g_{a,b}^0(x) db \right) \frac{da}{a^2}$$

for almost every  $x \in \mathbb{R}$ .

**Remark 10.** According to (16) and Definitions 3, 5,  $g \in \mathscr{S}(\mathbb{R})$  is a generalized wavelet, if and only if,  ${}^{t}V(g)$  is a classical wavelet and we have:

$$C^0_{t_V(g)} = C_g. ag{40}$$

**Lemma 7.** Let  $g \in \mathcal{W}(\mathbb{R})$  be real-valued. Then for all  $f \in \mathcal{S}(\mathbb{R})$  we have

$$\Phi_{V\mathscr{K}_g}(f)(a,b) = \mathscr{M}V\left[S_g\left({}^tVf\right)(a,\cdot)\right](b).$$

*Proof.* Notice that  $V \mathcal{K} g = {}^t V^{-1} g$  by virtue of (35). Further, g is a classical wavelet according to [3]. So it follows from Remark 10 that  $V \mathcal{K} g \in \mathcal{B}(\mathbb{R})$  is a generalized wavelet and

$$C_{V\mathcal{K}g} = C_g^0. \tag{41}$$

Due to (25), (29), (31), (35), (38) and Definition 5 we have

$$\begin{split} \Phi_{V\mathscr{K}g}(f)(a,b) &= \sqrt{a} f \# (V\mathscr{K}g) \widetilde{}_{a}(b) \\ &= \sqrt{a} {}^{t} V^{-1} \left[ {}^{t} V f * {}^{t} V (V\mathscr{K}g) \widetilde{}_{a} \right](b) \\ &= {}^{t} V^{-1} \left[ {}^{t} V f * H_{a} \left( {}^{t} V V \mathscr{K} \widetilde{g} \right) \right](b) \\ &= \mathscr{M} V \left[ {}^{t} V f * H_{a} (\widetilde{g}) \right](b) \\ &= \mathscr{M} V \left[ S_{g} \left( {}^{t} V f \right)(a, \cdot) \right](b). \end{split}$$

REFERENCES

**Lemma 8.** Let  $g \in \mathscr{B}(\mathbb{R})$  be real-valued. Then for all  $f \in \mathscr{W}(\mathbb{R})$ , we have

$$S_{t_{Vg}}(f)(a,b) = \mathscr{K}^{t}V\left[\Phi_{g}(Vf)(a,\cdot)\right](b).$$

*Proof.* Observe that by Remarks 7(iv) and 10,  ${}^{t}Vg$  is a classical wavelet. Using (29), (31), (39) and Definition 5 we have

$$V\left(S_{t_{Vg}}(f)(a,\cdot)\right)(b) = V\left(f * H_a\left({}^tV\widetilde{g}\right)\right)(b)$$
  
=  $\sqrt{a}V\left(f * {}^tV(\widetilde{g}_a)\right)(b)$   
=  $\sqrt{a}V(f) \# \widetilde{g}_a(b)$   
=  $\Phi_g(Vf)(a,b).$ 

Thus

$$S_{vVg}(f)(a,b) = V^{-1}[\Phi_g(Vf)(a,\cdot)](b)$$
  
=  $\mathscr{K}^{t}V[\Phi_g(Vf)(a,\cdot)](b)$ 

by virtue of (35).

We can now state our main result.

.

#### Theorem 8.

(i) Let  $g \in \mathcal{W}(\mathbb{R})$  be real-valued. Then for all  $f \in \mathcal{G}(\mathbb{R})$  we have

$${}^{t}V^{-1}f(x) = \frac{1}{C_{g}^{0}} \int_{0}^{\infty} \left( \int_{\mathbb{R}} \mathscr{M}V[S_{g}(f)(a,\cdot)](b)(V\mathscr{K}g)_{a,b}(x)A(b)db \right) \frac{da}{a^{2}}$$

(ii) Let  $g \in \mathscr{B}(\mathbb{R})$  be real-valued. Then for all  $f \in \mathscr{B}(\mathbb{R})$  we have

$$V^{-1}f(x) = \frac{1}{C_g} \int_0^\infty \left( \int_{\mathbb{R}} \mathscr{K}^t V[\Phi_g(f)(a,\cdot)](b) \left( {}^t Vg \right)_{a,b}^0(x) db \right) \frac{da}{a^2}.$$

Proof. The result follows by combining Theorems 5, 7, Lemmas 7, 8 and identities (40), (41).

#### References

- [1] MFE De Jeu. The Dunkl transform. Invent. Math, 133:147-162, 1993.
- [2] M Holschneider. Inverse Radon transform through inverse wavelet transform. Inverse Problems, 7:853-861, 1991.

- [3] TH Koornwinder. The continuous wavelet transform. Wavelets : An Elementary Treatement of Theory and Applications. Edited by T.H. Koornwinder , World Scientific , pages 27-48, 1993.
- [4] L Lapointe and L Vinet. Exact operator solution of the Calogero-Sutherland model. Comm. Math. Phys., 178:425-452, 1996.
- [5] JL Lions. Equations différentielles opérationnelles et problèmes aux limites. Springer-Verlag, Berlin, 1961.
- [6] MA Mourou and K Trimèche. Inversion of the Weyl integral transform and the Radon transform on  $\mathbb{R}^n$  using generalized wavelets. Monatshefte für Mathematik, 126:73-83, 1998.
- [7] MA Mourou and K Trimèche. Calderon's formula associated with a differential operator on  $(0, \infty)$  and inversion of the generalized Abel transform. Journal of Fourier Analysis and Applications, 4:229-245, 1998.
- [8] MA Mourou and K Trimèche. Transmutation operators and Paley-Wiener theorem associated with a singular Differential-Difference operator on the real line. Analysis and Applications, 1:43-69, 2003.
- [9] MA Mourou. Taylor series associated with a differential-difference operator on the real line. Journal of Computational and Applied Mathematics, 153:343-354, 2003.
- [10] MA Mourou. Inversion of the dual Dunkl-Sonine integral transform on  $\mathbb{R}$  using Dunkl wavelets. SIGMA, 5:1-12, 2009.
- [11] M Rösler. Positivity of Dunkl's intertwining operator. Duke Math. J., 98:445-463, 1999.
- [12] M Rösler. Generalized Hermite polynomials and the heat equation for Dunkl operators. Comm. Math. Phys., 192:519-542, 1998.
- [13] K Trimèche. Inversion of the Lions transmutation operators using generalized wavelets. Appl. and comput. Harm. Anal., 4:97-112, 1997.
- [14] K Trimèche. Transformation intégrale de Weyl et théorème de Paley-Wiener associés àun opérateur différentiel singulier sur  $[0, +\infty[$ . J. Math. Pures Appl., 60:51-98, 1981.
- [15] K Trimèche. Generalized wavelets and hypergroups. Gordon and Breach Publishing group, 1997.
- [16] Y Xu. Intertwining operator and h-harmonics associated with reflection groups. Canad. J. Math., 50:193-209, 1998.