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Abstract. Diffusion index models have received considerable attention from both theoreticians and

empirical econometricians in recent years. One reason for this is that datasets with many variables

are increasingly becoming available and being utilized for economic modelling, and another is that

common factors are often assumed to underlie the co-movements of a set of macroeconomic variables.

In this paper we review some recent results in the study of diffusion index models, focusing primarily

on advances due to [4, 5] and [1]. We discuss, for example, the construction of factors used in

prediction models implemented using diffusion index methodology and approaches that are useful for

assessing whether there are observable variables that adequately “proxy” for estimated factors.
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1. Introduction

The basic premise for using diffusion indices to predict economic variables is that the

information in large panel datasets can be condensed into a small set of estimated factors. This

suggests that there is a small set of crucial latent factors which generate the co-movements in

a large set of macroeconomic variables. In this paper we review recent results in the study of

diffusion index models, focusing primarily on advances due to [4, 5] and [1]. We discuss, for
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example, the construction of factors used in prediction models implemented using diffusion

index methodology and approaches that are useful for assessing whether there are observable

variables that adequately “proxy” for estimated factors.

Following the approach of [19, 19], diffusion index forecasts involve a two-step proce-

dure. First, the method of principal components is used to estimate the factors from a large

panel of possible predictors, X . Second, the estimated factors are used to forecast the vari-

able of interest, yt+1. Stock and Watson [19] demonstrate that diffusion index forecasts yield

encouraging results. Bai and Ng [4], however, point out that the regressors (factors) in the

diffusion index model are estimated, hence substantially increasing the forecast error vari-

ance. In a related paper, [5] examine whether observable economic variables can serve as

proxies for the underlying unobserved factors. In particular, they use the A( j) and M( j) statis-

tics to determine whether a group of observed variables yields precisely the same information

as that contained in the latent factors. Stock and Watson [19] have also attempted to link

the factors to observed variables. Armah and Swanson [1] argue that if observable economic

variables are indeed good proxies of the unobserved factors, then these proxies can be used in

place of the factors in the diffusion index model for prediction. Once the set of factor proxies

is fixed, one effectively eliminates the incremental increase in forecast error variance (i.e.,

uncertainty) associated with the use of estimated factors. Along these lines, they consider

“smoothed” versions of the A( j) and M( j) statistics that pre-select a set of factor proxies prior

to the ex-ante construction of a sequence of predictions. Armah and Swanson [1] carry out a

large variety of prediction experiments using the macroeconomic dataset of [22] in order to

assess their new methodology, and we summarize many of their findings here, some of which

show that the A( j) and M( j) statistics appear to offer an interesting means by which factor

proxies for later use in prediction models can be chosen. Indeed, their “smoothed” approaches

to factor proxy selection appear to yield predictions that are often mean square forecast error

“superior” not only relative to a benchmark factor model, but also to simple linear time series

models which are often difficult to beat in forecasting competitions.

The rest of the paper is organized as follows. In Section 2 we review certain important

elements of the diffusion index literature, with some focus on the methods used by the above

authors. In Section 3 we discuss the use of factor proxies, and Section 4 contains a summary

of recent empirical findings on proxy construction. Section 5 briefly discuss open issues in the

empirical literature, and concluding remarks are gathered in Section 5.

2. Diffusion Index Methodology

Summarizing the discussion in [1], let yt+1 be the series we wish to forecast and X t be

an N -dimensional vector of predictor variables, for t = 1, . . . , T . Assume that (yt+1, X t) has

a dynamic factor model representation with r common dynamic factors, ft . Hence, ft is an

r × 1 vector. The dynamic factor model is written as:

yt+h = α(L) ft + β
′Wt + ǫt+h (1)

and

x i t = λi(L) ft + ei t , (2)
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for i = 1,2, . . . , N , where Wt is an l × 1 vector of other observable variables with l ≪ N , such

as contemporaneous and lagged values of yt ; h > 0 is the lead time between information

available and the dependent variable; x i t is a single datum for a particular predictor variable;

ei t is the idiosyncratic shock component of x i t ; and α(L) and λi(L) are lag polynomials in non-

negative powers of L. In general, dynamic factor models can be transformed into static factor

models. In [19], the lag polynomials α(L) and λi(L) are modeled as α(L) =
∑

_ j = 0qα j L
j

and λi(L) =
∑q

j=0λi j L
j . The finite order of the lag polynomials allows us to rewrite (1) and

(2) as:

yt+h = α
′Ft + β

′Wt + ǫt+h (3)

and

x i t = Λ
′
i Ft + ei t , (4)

where Ft = ( f
′
t , . . . , f ′t−q)

′ is an r × 1 vector, with r = (q + 1)r and α is an r × 1 vector.

Here, r is the number of static factors (i.e., the number of elements in Ft). Additionally,

Λi = (λ
′
i0, . . . ,λ′iq)

′ is a vector of factor loadings on the r static factors, where λi j is an r × 1

vector for j = 0, . . . ,q and β = (β1, . . . ,βl)
′. Alternatively, from (2), the dynamic factor model

can be represented as:

x i t = λ′i0 ft +λ
′
i1 ft−1 + . . .+λ′iq ft−q + ei t (5)

= λ′i(L) ft + ei t (6)

and:

λi(L) = λi0 +λi1 L1 + . . .+λiq Lq.

For complete details, see [7]. Now, (6) can be written in the static form (4) where Ft and

Λi are defined as above. The static factor model refers to the contemporaneous relationship

between x i t and Ft . One major advantage of the static representation of the dynamic factor

model is it enables us to use principal components to estimate the factors. This involves

estimating Ft using an eigenvalue-eigenvector decomposition of the sample covariance matrix

of the data. It is worth noting that the use of principal components to estimate the factors

cannot be done with infinitely distributed lags of the factors [see 19]. In [10, 11, 18, 3, 2], it

was showed that the space spanned by both the static and dynamic factors can be consistently

estimated when N and T are both large. For forecasting purposes, little is gained from a clear

distinction between the static and the dynamic factors. However, many economic analyses

hinge on the ability to isolate the primitive shocks or the number of dynamic factors [see

7]. Boivin and Ng [8] also compare alternative factor based forecast methodologies, and

conclude that when the dynamic structure is unknown and the model is characterized by

complex dynamics, the approach of Stock and Watson performs favorably. For further details,

please refer to [1].

The problem of obtaining the necessary estimates in (4) would be simplified if we knew

F0. Then Λi could be estimated via least squares by setting {x i t}Tt=1 to be the dependent

variable and {Ft}Tt=1 to be the explanatory variable. On the other hand, if Λ were known,

Ft could be estimated by regressing {x i t}Ni=1 on {Λi}Ni=1. Since the common factors are not

observed, in the regression analysis of (4), we replace Ft by eFt , estimates that span the same



N. Armah and N. Swanson / Eur. J. Pure Appl. Math, 3 (2010), 478-501 481

space as Ft when N , T →∞. Estimation of these common factors from large panel data sets

of macroeconomic variables can be carried out using principal component analysis. We refer

the reader to [17, 19, 18, 20, 21] and [3] for a detailed explanation of this procedure, and to

[14, 15, 16], [12, 13] and [11] for further detailed discussion of diffusion models, in general.

As noted earlier Ft and λi are not separately identified, but rather identifiable only up to

a square matrix. Stock and Watson [17] further demonstrate that when principal components

is used, the factors remain consistent even when there is some time variation in Λ and small

amounts of data contamination, so long as the number of variables in the panel dataset or the

number of predictors is very large (i.e., N >> T ). In this paper, we only give an outline of

how principal component analysis is carried out, with particular emphasis on those features

of the analysis that allow us to carry out our prediction experiments using the A( j) and M( j)

statistics of [5].

Let k (k <min{N , T}) be an arbitrary number of factors, Λk be the N × k matrix of factor

loadings, (Λk
1, . . . ,Λk

N )
′, and F k be a T × k matrix of factors (F k

1 , . . . , F k
T )
′. From (4), estimates

of Λk
i

and F k
t are obtained by solving the optimization problem:

V (k) = min
Λk ,F k

(N T )−1
N∑

i=1

T∑

t=1

(x i t −Λk′
i F k

t )
2 (7)

Let eF k and eΛk be the minimizers of equation (7). Since Λk and F k are not separately identi-

fiable, if N > T , a computationally expedient approach would be to concentrate out eΛk and

minimize (7) subject to the normalization F k′F k/T = Ik. Minimizing (7) is equivalent to

maximizing t r[F k′(X X ′)F k]. This optimization is solved by setting eF k to be the matrix of the

k eigenvectors of X X ′ that correspond to the k largest eigenvalues of X X ′. Note that t r[·]
represents the matrix trace. The superscript in Λk and F k signifies the use of k factors in the

estimation and the fact that the estimates will depend on k. Let eD be a k× k diagonal matrix

consisting of the k largest eigenvalues of X X ′. The estimated factor matrix, denoted by eF k,

is
p

T times the eigenvectors corresponding to the k largest eigenvalues of the T × T matrix

X X ′. Given eF k and the normalization F k′F k/T = Ik, eΛk′ = (eF k′eF k)−1eF k′X = eF k′X/T is the

corresponding factor loadings matrix.

The solution to the optimization problem in (7) is not unique. If N < T , it becomes

computationally advantageous to concentrate out F
k

and minimize (7) subject to Λ
k′
Λ

k
/N =

Ik. This minimization is the same as maximizing t r[Λk′X ′XΛk], the solution of which is to

set Λ
k

equal to the eigenvectors of the N × N matrix X ′X that correspond to its k largest

eigenvalues. One can consequently estimate the factors as F
k
= X ′Λk

/N . eF k and F
k

span

the same column spaces, hence for forecasting purposes, they can be used interchangeably

depending on which one is more computationally efficient. Given eF k and eΛk, let bV (k) =
(N T )−1

N∑
i=1

T∑
t=1

(x i t − eΛk′
i
eF k

t )
2 be the sum of squared residuals from regressions of X i on the k

factors, ∀i. A penalty function for over fitting, g(N , T ), is chosen such that the loss function

IC(k) = log(bV (k))+ kg(N , T ) (8)
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can consistently estimate r. Let kmax be a bounded integer such that r ≤ k max. Bai

and Ng [3] propose three versions of the penalty function g(N , T ), namely, g1(N , T ) =�
N+T

N T

�
log
�

N T

N+T

�
, g2(N , T ) =
�

N+T

N T

�
log C2

N T , and g3(N , T ) =

�
log(C2

N T )

C2
N T

�
, all of which lead

to consistent estimation of r. In our empirical and Monte Carlo experiments, we use g2(N , T ).

Of note is that we tried the other penalty functions above, and our results were qualitatively

the same. However, [3], as well as others, have shown that in certain contexts, results are

sensitive to the choice of penalty function. Hence, (8) becomes:

IC(k) = log(bV (k)) + k(
N + T

N T
) log C2

N T

where CN T =min{pN ,
p

T}. The consistent estimate of the true number of factors is then:

bk = arg min
0≤k≤k max

IC(k), (9)

and limN ,T→∞Prob[bk = r] = 1 if g(N , T )→ 0 and C2
N T · g(N , T )→∞ as N , T →∞, as shown

in [3].

3. Recent Developments: Using Proxies in Place of Factors

Reconsider the general equation (3), yt+h = α
′Ft +β

′Wt+ǫt+h. As mentioned above, and

shown in [18] and [3], under a set of moment conditions on (ǫ, e, F0) and an asymptotic rank

condition on Λ, if the space spanned by Ft can be consistently estimated, then
p

T consistent

estimates of α and β are obtainable. Under a similar set of conditions, it is also possible to

obtain min[
p

N ,
p

T] consistent forecasts if
p

T/N → 0 as N , T → ∞. Let zt = (F
′
t ,W
′
t )
′;

E(ǫt+h|yt , zt , yt−1, zt−1, . . .) = 0, for any h > 0; and let zt and ǫt be independent of the

idiosyncratic errors eis, ∀i, s. If Ft is observable and α and β are known, based on the above

assumption that the mean of ǫt+h conditional on past information is zero, the conditional

mean and minimum mean square error forecast of yT+h is given by:

yT+h|T = E(yT+h|zT , zT−1, . . .) = α′FT + β
′WT ≡ δ′zT

Such a prediction is not feasible, however, since α, β and Ft are all unobserved. The feasible

prediction that replaces the unknown objects by their estimates is:

byT+h|T = bα′eFT +
bβ ′WT =
bδ′bzT , (10)

where bzt = (eF ′t ,W ′t )′. Here, bα and bβ are the least squares estimates obtained from regressing

yt+h on eFt and Wt , t = 1, . . . , T − h. We suppress the k superscript on eF k
t because we assume

we have consistently estimated the number of factors underlying the dataset. The factors, Ft ,

are estimated from x i t by the method of principal components, as discussed above. As the

objective is to forecast yT+h, a crucial aspect of our analysis is the distribution of the forecast

error. As explained in detail in [4], since yT+h = yT+h|T + ǫT+h, it follows that the forecast

error is:

bǫT+h ≡ byT+h|T − yT+h = (byT+h|T − yT+h|T )− ǫT+h
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If ǫt ∼ N(0,σ2
ǫ), then:

bǫT+h ∼ N(0,σ2
ǫ + var(byT+h|T )) (11)

where

var(byT+h|T ) =
1

T
bz′T Avar(bδ)bzT +

1

N
bα′Avar(eFT )bα. (12)

Here, var(byT+h|T ) reflects both parameter uncertainty and regressor uncertainty. In large

samples, var(bǫT+h) is dominated by σ2
ǫ . If we ignore var(byT+h|T ), σ2

ǫ alone will under-

estimate the true forecast uncertainty for finite T and N . Let us now assume for a moment that

Ft is observable. The feasible prediction of yT+h would then be y T+h|T = α
′FT+β

′
WT = δ

′
zT ,

where α and β are the least squares estimates obtained from regressing yt+h on Ft and Wt .

Once again, since yT+h = yT+h|T + ǫT+h, the forecast error is:

ǫT+h = y T+h|T − yT+h = (yT+h|T − yT+h|T )− ǫT+h

If ǫt ∼ N(0,σ2
ǫ), then

ǫT+h ∼ N(0,σ2
ǫ + var(yT+h|T )), (13)

where

var(yT+h|T ) =
1

T
z′T Avar(δ)zT . (14)

Thus, and as discussed by [4], when comparing var(yT+h|T ) with var(byT+h|T ), it is clear that

estimating the factors increases the forecast error variance, var(byT+h|T ), by
1

N
bα′Avar(eFT )bα. Of course, if we could observe the factors instead of estimating them, we

would reduce the forecast error variance from (11) to (13). In finite samples, this may yield

important prediction error variance reduction. It is for this reason that we consider replacing

the factors in (10) with observable variables that closely proxy the factors. The approach taken

in order to do this involves implementing a “first stage” factor analysis in which proxies are

formed using the A( j) and M( j) statistics of [5]. In a “second stage,” the observable proxies

are used in the construction of a prediction model. In this way, all estimation error associated

with the factor analysis and proxy selection is essentially “hidden” in the first stage, and does

not directly manifest itself in the “second stage” prediction models and prediction errors. Put

another way, we are trading-off “estimated factor uncertainty” for “variable selection uncer-

tainty” (see introduction for further discussion). Of course, issues related to “pre-testing” and

sequential testing bias still arise. Nevertheless, in our prediction experiments we attempt to

quantify through finite sample experiments the potential gains to using the “proxy” approach.

Now, suppose we observe G′, a (T×m)matrix of observable economic variables that could

potentially proxy the latent factors (i.e., G is an m× T matrix). At any given time t, any of

the m elements of Gt (m× 1) will be a good proxy if it is a linear combination of the r × 1

latent factors, Ft . Let G j t be an element of the m vector Gt . The null hypothesis is that G j t is

an exact proxy, or more precisely, ∃ θ j (r × 1) such that G j t = θ
′
j Ft . In order to implement all

of the methods, consider the regression G j t = γ
′
j
eFt +ρt . Let bγ j be the least squares estimate



N. Armah and N. Swanson / Eur. J. Pure Appl. Math, 3 (2010), 478-501 484

of γ j and let bG j t = bγ′j eFt . The test is carried out by constructing the following t-statistic:

τt( j) =
(bG j t − G j t)

(dvar(bG j t))
1/2

(15)

where

dvar(bG j t) =
1

N
bγ′j eD−1

� eF ′eF
T

�
eΓt

� eF ′ eF
T

�
eD−1bγ j

=
1

N
bγ′j eD−1eΓt
eD−1bγ j, (16)

and eΓt is defined below. The last step above is due to the normalization that eF ′eF/T = Ibk.

Once again, eD is a k× k diagonal matrix consisting of the k largest eigenvalues of X X ′. Given

the null hypothesis that G j t = θ
′
j Ft and that bG j t converges to G j t at rate

p
N , [5] show that

the limiting distribution of
p

N(bG j t − G j t) is asymptotically normal and hence τt( j) has a

standard normal limiting distribution. Consistent choices for the the bk×bk matrix eΓt include

the following:

eΓ1
t =

1

n

n∑

i=1

n∑

j=1

eΛi
eΛ′j

1

T

T∑

t=1

eei tee j t , ∀ t, (17)

eΓ2
t =

1

N

N∑

i=1

ee2
i t
eΛi
eΛ′i, (18)

and

eΓ3 = bσ2
e

eΛ′eΛ
N

, (19)

where bσ2
e =

1

N T

N∑
i=1

T∑
t=1

ee2
i t , eei t = x i t − eΛ′i eFt and n

min[N ,T]
→ 0 as N , T →∞. In our Monte Carlo

simulation and our empirical analysis, we choose n = min{pN ,
p

T}. Equation (17) allows

cross-section correlation but assumes time-series stationarity of ei t . This covariance estimator

is a HAC type estimator because it is robust to cross-correlation [see 4, for complete details].

Equation (18) allows for time-series heteroskedasticity, but assumes no cross-sectional corre-

lation of ei t . Equation (19) assumes no cross-sectional correlation and constant variance, ∀i

and ∀t. For small cross-sectional correlation in ei t , [4] found that constraining the correla-

tions to be zero could sometimes be desirable. In this regard, they make the point that (18)

and (19) are useful even if residual cross-correlation is genuinely present.

As mentioned earlier, τt( j) in (15) has a standard normal limiting distribution. Let Φτ
ξ

be

the ξ percentage point of the limiting distribution of τt( j). A hypothesis test based on the

t-statistic in (15) enables us to determine whether an observed value of a candidate variable is

a good proxy at a specific time t. However, given information up to time T , whatever methods

or procedures we use to select the proxies ought to select whole time series G j , for which G j t
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satisfies the null hypothesis, ∀t. In this regard, our first proxy selection method is based upon

the following statistic:

A( j) =
1

T

T∑

t=1

1(|τt( j)|> Φτξ). (20)

The A( j) statistic is the actual size of the test (i.e., the probability of Type I error given the

sample size). Since τt( j) is asymptotically standard normal and the test is a two-tailed test,

the actual size, A( j), of the t-test should converge to the nominal size (the desired signifi-

cance level is 2ξ) as T →∞. This means that if a candidate variable is a good proxy of the

underlying factors of a dataset, the A( j) statistic calculated from its sample time series should

approach 2ξ as the sample size increases. This is the basis on which we use the A( j) statistic

to select proxies. It should be noted that the A( j) statistic does not constitute a test in the

strict sense since we do not compare a test statistic to a critical value to determine whether or

not to reject a null hypothesis. Rather, this procedure gives a ranking of the proxies with the

best proxy having an A( j) statistic value closest to 2ξ.

Another method for selecting the proxies considers the statistic:

M( j) = max
1≤t≤T
|τt( j)|, (21)

which is based on a measure of how far the bG j t curve is from G j t . If ei t is serially uncorrelated,

then:

P(M( j)≤ x)≈ [2Φ(x)− 1]T , (22)

where Φ(x) is the cdf of a standard normal random variable. From (21) and (22), we can

perform a test to determine whether the time series of a candidate variable is a good proxy

for the latent factors. For instance, suppose we are given a significance level 2ξ and a sample

of size T from a particular candidate variable, G j . From the right hand side of (22), we can

calculate the corresponding critical value, x , for the test. For the same sample, we calculate

M( j) from (21) and conclude that G j is a good proxy if M( j)≤ x , and a bad proxy otherwise.

The test based on the M( j) statistic is thus stronger than the selection method based on the

A( j) statistic, as the M( j) test gives a sharp decision rule. However, the M( j) test has at least

one disadvantage. It requires ei t to be serially uncorrelated. We ignore this requirement in our

experimental analysis. It should be noted that x increases with the sample size, T . Depending

on the nature of the observed sample, this fact could either preserve or reduce the power of

the M( j) test.‡

The A( j) and M( j) statistics discussed above may yield a different set of proxies at each

point in time when used to construct a sequence of recursive forecasts. Namely, if the in-

formation set used in the parameterization of a prediction model is updated prior to the

construction of each new forecast for some sequence of E ex ante predictions, then the “first

stage” factor analysis discussed above may yield a sequence of E different vectors of factor

proxies. Thus, in addition to the A( j) and M( j) proxy selection methods, we also consider

a version of these methods where the sample period in our empirical analysis is broken into

‡Note that we also considered the confidence interval approach of [4]; but it did not perform better than the

above methods.
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three subsamples (R1,R2, and E, such that T = R1 + R2+ E). The first subsample is used to

estimate proxies. Thereafter, one observation from R2 is added, and this new larger sample is

used to recursively select a second set of factor proxies. This is continued until the second sub-

sample is exhausted, yielding a sequence of R2 different vectors of factor proxies. Individual

proxies are then ranked according to their selection frequency, and those occurring the most

frequently are selected and fixed for further use in constructing E ex ante predictions. As some

of our models (such as the autoregressive model) select the number of lags and re-estimate

all parameters prior to the formation of each new prediction, this smoothed approach is at

a disadvantage, in the sense that it is static (i.e., the set of proxies is fixed throughout the

forecast experiment). However, loading parameters for the proxies are still re-estimated prior

to the formation of each new recursive prediction. Of course, the potential advantage to this

approach is that noise across the proxy selection process is suppressed.

4. Empirics

4.1. Setup

In order to assess the performance of factor proxy based prediction models, [1] focus on

direct multistep-ahead predictions. Forecasts are generated as h-step ahead predictions of yt ,

say. Namely, they predict yt+h = log
�

Yt+h

Yt+h−1

�
, where Yt is the variable of interest. In the

appendix, we provide the specifications and brief descriptions of all of the forecast models

examined.

They consider two classes of proxy forecast models. The first class of models, which are

called “ordinary” proxy forecast models, include Model 4 - Model 7. With these models,

proxies are re-selected recursively, prior to the construction of each h-step ahead prediction.

Let {A( j)}m
j=1, be a set of A( j) statistics calculated for each candidate proxy variable j. As

suggested above, in this particular paper, we set m = N ; but this need not always be the case.

Define:

SA = {GA
j1

, . . . , GA
jbk
} (23)

where bk ≤ m and |A� j1
�− 2ξ| ≤ |A� j2

�− 2ξ| ≤ . . . ≤ |A
�

jbk
�
− 2ξ|. Here, SA is the set of bk

proxy variables selected via implementation of the A( j) test. Further, define GA
j1

as the “best”

possible proxy as determined by the A( j) while GA
j2

is the next “best” proxy, and so on. Recall

that G j is an observable time series variable, such as the CPI or the federal funds rate. Turning

next to proxies selected via implementation of the M( j) test, define:

SM = {G j ∈ G | M( j)≤ x}, j = 1, . . . , m.

Here, SM is a set of proxies selected by the M( j) test. The number of proxy variables selected

at each recursive stage is indeterminate. Furthermore, the selected proxies are not ranked.

For Model 6, where the M( j) test is used to select a single proxy, our approach is to select the

proxy in the set SM that is associated with the smallest value of M( j).

The second class of models, which are called “smoothed” proxy forecast models include

Model 8 - Model 15. Here, the factors and the proxies are estimated recursively, just as
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in Models 1, 4-7, but this is done starting with R1 observations and ending with R1 + R2

observations. The “smoothed” proxies are selected as the bk proxies that are “most frequently”

picked by the A( j) and M( j) tests. Thereafter, all proxies are fixed, although their “weights”

in the prediction models are still re-estimated recursively, prior to the construction of each

of the E ex-ante forecasts. To differentiate between proxies picked using the “ordinary” and

“smoothed” versions of the tests, we define SA∗ and SM∗ to be the “smoothed” versions of

SA and SM . The ex-ante prediction period, E, is the same for all models in our empirical

experiments.

In order to evaluate forecast performance, the authors compare mean squared forecast

errors (MSFEs) defined as 1

E

∑T−h

t=R−h+1

�byt+h− yt+h

�2
, where R = R1 + R2. They also carry

out [9] predictive accuracy tests. Let {by1,t}T−h
t=R−h+1

and {by2,t}T−h
t=R−h+1

be two forecasts of

the time series {yt}T−h
t=R−h+1

. The “benchmark” is Model 1 (i.e., the factor model), and is

used to generate {by1,t}T−h
t=R−h+1

, while Models 2-15 are used to generate {by2,t}T−h
t=R−h+1

. Since

the “benchmark” contains estimated factors and the alternative models contain no estimated

factors, the “benchmark” and alternative models are non-nested. The corresponding out-

of-sample forecast errors are {bǫ1,t}T−h
t=R−h+1

and {bǫ2,t}T−h
t=R−h+1

. The null hypothesis of equal

forecast accuracy for two forecasts is given by H0 : E[bǫ2
1,t] = E[bǫ2

2,t] or H0 : E[bdt] = 0,where

bdt = bǫ2
1,t − bǫ2

2,t is the loss differential series. The DM test statistic is DM = E−1/2 dÆ
bσ2

d

, where

d = 1

E

∑T−h

t=R−h+1
bdt , and bσ2

d
is a HAC standard error for bdt . Since the forecast models are

non-nested, and assuming that parameter estimation error vanishes, the DM test statistic has

a N(0,1) limiting distribution. Finally, given this setup, a negative DM t-stat indicates that

the factor model yields a lower point MSFE. For further discussion see [1].

4.2. Data

The dataset used to estimate the factors is the same as that used in [22], which can be

obtained at http://www.prin
eton.edu/~mwatson. This dataset contains 132 monthly

time series for the United States for the entire period from 1960:1 to 2003:12, hence N = 132

and T = 528 observations. The series were selected to represent the following categories

of macroeconomic time series: real output and income; employment, manufacturing and

trade sales; consumption; housing starts and sales; real inventories and inventory-sales ratios;

orders and unfilled orders; stock price indices; exchange rates; interest rate spreads; money

and credit quantity aggregates; and price indexes. For further discussion, see [1].

4.3. Findings

Predictions are constructed for the period 1989:5-2003:12, and results are gathered in

Table 1 (frequency of selected factor proxies), Table 2 (CPI, PCED, and PPI forecasting com-

petition results), and Table 3 (Industrial Production, Personal Income; Nonagricultural Em-

ployment, Manufacturing and Trade Sales). In Table 1, selection frequencies are reported,

while in Tables 2-3 MSFEs and DM test statistics are reported. The MSFE values reported for

CPI, PCED and Nonagricultural Employment are multiplied by 100,000 and those reported
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for Producer Price Index, Industrial Production, Manufacturing and Trade Sales and Personal

Income are multiplied by 10,000. For the benchmark Model 1 (i.e., the factor model), the

only tabular entry for all forecast horizons is the MSFE. With all of the other models (i.e.,

our alternative models), there are two entries: The top entry is the MSFE and the bottom

entry in parenthesis is the DM t-statistic. As mentioned earlier, a positive DM statistic value

indicates that the alternative model has a MSFE that is lower than the benchmark, while a

negative statistic value indicates the reverse. Entries in bold signify instances where the al-

ternative model outperforms the factor model as determined by a point MSFE comparison.

Boxed MSFE entries represent the lowest MSFE value among all the models for a particular

forecast horizon. DM statistic entries with a ∗ indicate instances where the respective alter-

native model significantly outperforms the factor model at a 10% significance level, whereas

for entries with a † sign, the factor model significantly outperforms the alternative model at a

10% significance level. We now provide a number of conclusions based on the tables.

Upon inspection of Table 2, it is clear that the benchmark factor model (i.e., Model 1)

significantly outperforms most of the alternative models in the forecast of CPI and PCED.

This point is supported by the large number of DM test rejections in Panels A and B of Table

2. While the benchmark still yields the lower MSFE in many pairwise comparisons when

examining PPI results (see Panel C of the table), the DM test null of equal predictive accuracy

is not frequently rejected. A key exception to the above conclusion that the benchmark model

yields superior predictions is in the case of Models 12-15. Recall that these are autoregressive

models with exogenous variables (ARX). The lags of the ARX models are selected by the SIC

and the exogenous variables are based on smoothed versions of the A( j) and M( j) tests. For

h = 1,3,12, these models not only frequently yield lower point MSFEs than the benchmark,

but the difference in performance is often significant. Across all 3 panels and 3 forecast

horizons (i.e., 9 variable/horizon combinations), it is interesting to note that one or many of

Models 12-15 are “MSFE-best” 7 times. Furthermore, of these 7 “wins” it is Model 12 that

yields the lowest MSFE in 4 instances. Thus, we have direct evidence that the parsimonious

single proxy smoothed A( j)model fares very well when compared not only to the benchmark,

but also to other models which yield lower MSFEs than the benchmark. This suggests that

while the factor approach is very useful, often beating the pure autoregressive and other linear

models when used for predicting price variables, a parsimonious version of the smoothed A( j)

factor proxy approach performs the best, overall. Thus, as pointed out by [6], parsimony is

still important. This is even true in the context of ordinary proxy models (Models 4-7), as

choosing one proxy rather than bk proxies often yields the lowest MSFE model.

Turning now to Table 3, the above conclusions still hold, with the exception that many

other alternative models, and not just Models 12-15, are point MSFE “better” than the bench-

mark. Summarizing the results in Table 3, the benchmark model does yield the lowest MSFE

for 3 of the 4 variables when h = 1 and for 1 variable when h = 3, although the DM test

null is not rejected in any of these cases. Furthermore, for all remaining horizon/variable

combinations, the benchmark does not yield the lowest MSFE. Indeed, in all but one of these

other cases, factor proxy approaches yield the lowest MSFE (the sole exception is a random

walk “win” for Manufacturing and Trade Sales when h= 3).

Given the above results, it is of interest to tabulate which factor proxies were used in
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our prediction experiments. This is done in Table 1, where factor proxies that are (most

frequently) selected using the A( j) and M( j) test and the frequencies with which they are

selected are reported. The second column under “Trans” indicates the data transformation

that was performed to induce data stationarity. As is evident, S&P’s Common Stock Price

Index, Industrials; S&P’s Common Stock Price Index, Composite; Dividend Yields, a 1-Year

Bond Rate; and Housing Starts are the five most common proxies selected by both A( j) and

M( j). Structural change could account for some of the proxies being selected less frequently

than the five above proxies. Clearly, the importance of proxies may in some cases depend on

the period in history represented by the data. However, it is interesting that a variety of factor

proxies are “picked” across our entire ex-ante prediction period.

These results, as was originally reported in [1], suggest that factor proxies are useful for

prediction.

5. New Directions

Many issues remain open in the area of diffusion modeling. For example, while latent

variables may underlie much of the systematic movements in economic variables, the rele-

vance of particular latent variables may differ markedly across different market sectors. Also,

there is clearly a large amount of excess information in large-scale macroeconomic datasets,

and this may cause factor estimates to be very noisy. It remains to assess whether other data

reduction techniques such as boosting, bagging, and application of the garrotte or various

ridge regression techniques may prove useful for data reduction when used in conjunction

with diffusion indices.

More flexible nonlinear methods for incorporating factors into prediction models also re-

mains to be explored in detail, although [6] propose a more flexible structure that allows the

relationship between the predictors and factors to be non-linear. They use a non-linear “link”

function that involves expanding the set of predictors to include non-linear functions of the

observed variables. In general, though, little is known about the usefulness or relevance of

implementing diffusion methodology in generic nonlinear settings, such as when specifying

artificial neural networks. Moreover, issues of over-fitting associated with the use of large-

scale datasets that are ever growing as new information is accumulated and new variables are

measured are of some import. For example, when applying classical tests with fixed signifi-

cance levels in diffusion index modeling, sequential test biases such as those that arise when

comparing numerous different prediction models become relevant.

Other issues related to nonstationarity considerations also remain open. For example, are

subsets of the latent variables estimated using factors cointegrated, and if so what are the im-

plications for prediction? Does the data transformation undertaken to impose stationarity on

variables in large-scale datasets have an impact on findings of stationarity and cointegration,

and more generally on the extraction of factors?
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6. Concluding Remarks

In this paper, we review some recent results on diffusion index modeling and suggest

that these new methods appear promising, although many issues remain open when using

diffusion indices in the specification of prediction models.
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Appendix

Prediction Models Used in Empirical Experiments§

• Model 1 (Factor Model): This is the standard factor forecast model: byT+h|T = ba0 +

bα′eFT +
bβ yT

• Model 2 (Autoregressive Model): This is an AR(p) forecast model, with lags selected by

the SIC: byT+h|T = ba0 +
p∑

j=1

bα j yT− j+1

• Model 3 (Random Walk Model): This is a random walk forecast model: byT+h|T = yT

• Model 4 (Ordinary A( j) - 1 Proxy Model): In this forecast model, the single “best” proxy

selected by the A( j) test (i.e., the proxy associated with the A( j) statistic value closest

to 2ξ in absolute value) is used as the only proxy regressor in the forecast model:

byT+h|T = ba0 + bαGA
j1 T +
bβ yT

• Model 5 (Ordinary A( j) - bk Proxies Model): The “best” bk factor proxies selected by the

A( j) test are used: byT+h|T = ba0 + bα′SA
T +
bβ yT , where SA

T = {GA
j1T , . . . , GA

jbk T }.

• Model 6 (Ordinary M( j) - 1 Proxy Model): In this forecast model, the single “best”

factor proxy selected by the M( j) test (i.e., the proxy associated with the lowest M( j)

-statistic) is used as the only proxy regressor in the forecast model: byT+h|T = ba0 +

bαGM
jT +
bβ yT . Since it is possible for the M( j) test to select no proxies at all, should that

scenario occur, the model degenerates to: byT+h|T = ba0 +
bβ yT .

• Model 7 (Ordinary M( j) - bk Proxies Model): This forecast model is the same as Model

6, but bk factor proxies selected by the M( j) test are used: byT+h|T = ba0 + bα′SM
T +
bβ yT .

• Model 8 (Smoothed A( j) - 1 Proxy Model): This forecast model is the same as Model

4, except that the smoothed version of the A( j) test is used (see Section 3.3 for further

discussion).

• Model 9 (Smoothed A( j) - bk Proxies Model): This forecast model is the same as Model

5, except that the smoothed version of the A( j) test is used (see Section 3.3 for further

discussion).

• Model 10 (Smoothed M( j) - 1 Proxy Model): This forecast model is the same as Model

6, except that the smoothed version of the M( j ) test is used (see Section 3.3 for further

discussion).

§See Sections 3.3 and 4 for further discussion of the factor proxy selection methodology used in the construction

of the above models.
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• Model 11 (Smoothed M( j) - bk Proxies Model): This forecast model is the same as

Model 7, except that the smoothed version of the M( j ) test is used (see Section 3.3 for

further discussion).

• Model 12 (Autoregressive plus Smoothed A( j) - 1 Proxy Model): This forecast model

is the same as Model 8, except that the lag of the autoregressive component is selected

by the SIC rather than restricted to 1: byT+h|T = ba0+ bαGA∗
j1T +

px∑
j=1

bβ j yT− j+1.

• Model 13 (Autoregressive plus Smoothed A( j) - bk Proxies Model): This forecast model

is the same as Model 9, except that the lag of the autoregressive component is selected

by the SIC rather than restricted to 1.

• Model 14 (Autoregressive plus Smoothed M( j) - 1 Proxy Model) : This forecast model

is the same as Model 10, except that the lag of the autoregressive component is selected

by the SIC rather than restricted to 1.

• Model 15 (Autoregressive plus Smoothed M( j) - bk Proxies Model): This forecast model

is the same as Model 8, except that the lag of the autoregressive component is selected

by the SIC rather than restricted to 1.

Results

Table 1: Frequency of Selected Factor Proxies1

Selected Factor Proxy Trans A(j) M(j)

fspin: S&P’s Common Stock Price Index, Industrials ∆ log 1.000 1.000

fspcom: S&P’s Common Stock Price Index, Composite ∆ log 1.000 1.000

fsdxp: S&P’s Composite Common Stock: Dividend Yield ∆lv 1.000

fygt1: Interest Rate: U.S. Treasury Const Maturities, 1-Yr ∆lv 1.000

hsfr: Housing Starts, Nonfarm log 1.000 0.949

hsbr: Housing Authorized, Total New Private Housing Units log 0.989 0.455

ips10: Industrial Production Index, Total Index ∆ log 0.909

exrus: United States, Effective Exchange Rate ∆ log 0.835 0.370

sfygm6: 6 month Treasury Bills - Federal Funds, spread lv 0.813

sfygt5: 5 yr Treasury Bond Const. Maturities - Federal Funds, spread lv 0.750

sfygt10: 10 yr Treasury Bond Const. Maturities - Federal Funds, spread lv 0.659 0.420

fygm6: Interest Rate, U.S. Treasury Bills, Sec Mkt, 6-Mo. ∆lv 0.460

a0m077: Ratio, Mfg. and Trade Inventories to Sales ∆lv 0.341 0.261
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Table 2: Predictive Performance of Various Models for Price Variables2

Forecast Horizon (h) 1 3 12 24

Panel A: CPI

Model 1 3.496 3.464 4.299 4.089

Model 2 3.457 3.330 4.357 5.069

(0.136) (0.375) (-0.155) (-2.270)†

Model 3 4.785 5.270 6.347 6.129

(-3.788)† (-3.795)† (-3.768)† (-3.087)†

Model 4 3.809 4.075 4.792 5.305

(-1.164) (-1.873)† (-1.336) (-2.737)†

Model 5 4.079 4.592 5.255 5.337

(-1.125) (-1.775)† (-1.650)† (-1.878)†

Model 6 3.802 4.107 4.757 4.891

(-1.139) (-2.011)† (-1.347) (-1.770)†

Model 7 4.516 4.747 5.095 5.103

(-1.479) (-2.223)† (-1.480) (-1.600)

Model 8 3.810 4.111 4.759 4.960

(-1.169) (-2.048)† (-1.382) (-2.014)†

Model 9 3.677 3.921 4.472 4.665

(-0.775) (-1.798)† (-0.618) (-1.645)†

Model 10 3.819 4.101 4.769 5.208

(-1.212) (-2.040)† (-1.304) (-2.576)†

Model 11 3.720 4.050 4.563 4.740

(-0.935) (-2.022)† (-0.881) (-1.659)†

Model 12 3.340 3.158 4.020 4.448

(0.549) (0.995) (0.921) (-0.981)

Model 13 3.519 3.296 4.097 4.259

(-0.086) (0.539) (0.606) (-0.537)

Model 14 3.486 3.381 4.351 5.124

(0.035) (0.232) (-0.145) (-2.379)†

Model 15 3.351 3.331 3.999 4.297

(0.527) (0.411) (0.938) (-0.634)
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Table 2 Continued

Panel B: Consumption Deflator (PCE)

Model 1 2.689 2.882 3.162 2.902

Model 2 2.613 2.540 3.097 3.918

(0.245) (1.598) (0.275) (-2.985)†

Model 3 4.318 3.956 4.521 4.823

(-2.312)† (-3.275)† (-3.082)† (-3.373)†

Model 4 3.561 3.214 3.608 4.114

(-1.911)† (-1.525) (-1.983)† (-3.754)†

Model 5 2.900 3.488 3.557 3.663

(-1.106) (-2.348)† (-1.990)† (-2.308)†

Model 6 3.542 3.220 3.587 3.835

(-1.871)† (-1.593) (-2.118)† (-2.933)†

Model 7 3.123 3.386 3.501 3.648

(-1.865)† (-2.486)† (-1.834)† (-2.349)†

Model 8 3.562 3.283 3.921 4.412

(-1.910)† (-1.847)† (-3.021)† (-4.066)†

Model 9 3.375 3.233 3.491 3.826

(-1.687)† (-1.948)† (-1.729)† (-2.957)†

Model 10 3.593 3.227 3.673 4.207

(-1.887)† (-1.614) (-1.969)† (-3.925)†

Model 11 3.548 3.196 3.496 3.781

(-1.717)† (-1.504) (-1.769)† (-2.905)†

Model 12 2.619 2.485 3.118 3.846

(0.237) (2.005)* (0.191) (-2.904)†

Model 13 2.669 2.554 2.874 3.294

(0.066) (1.669)* (1.360) (-1.562)

Model 14 2.637 2.558 3.123 3.978

(0.163) (1.544) (0.160) (-3.229)†

Model 15 2.633 2.525 2.817 3.271

(0.175) (1.870)* (1.617) (-1.542)
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Table 2 Continued

Panel C: Producer Price Index (PPI)

Model 1 2.142 2.152 2.351 2.198

Model 2 2.445 2.360 2.433 2.385

(-1.813)† (-1.349) (-0.660) (-1.232)

Model 3 3.140 4.070 3.625 3.737

(-3.026)† (-3.407)† (-3.214)† (-3.404)†

Model 4 2.201 2.413 2.300 2.421

(-0.387) (-1.424) (0.370) (-1.599)

Model 5 2.282 2.391 2.370 2.536

(-1.143) (-1.339) (-0.152) (-1.576)

Model 6 2.203 2.392 2.256 2.303

(-0.402) (-1.320) (0.729) (-0.743)

Model 7 2.332 2.480 2.273 2.420

(-1.205) (-1.828)† (0.632) (-1.110)

Model 8 2.206 2.397 2.257 2.332

(-0.420) (-1.351) (0.730) (-1.021)

Model 9 2.115 2.192 2.245 2.238

(0.394) (-0.769) (1.369) (-0.352)

Model 10 2.217 2.474 2.345 2.407

(-0.465) (-1.806)† (0.043) (-1.350)

Model 11 2.199 2.409 2.200 2.313

(-0.385) (-1.569) (1.449) (-0.938)

Model 12 2.396 2.299 2.356 2.332

(-1.654)† (-0.888) (-0.054) (-1.021)

Model 13 2.115 2.344 2.245 2.238

(0.394) (-1.512) (1.369) (-0.352)

Model 14 2.447 2.401 2.465 2.407

(-1.784)† (-1.558) (-0.912) (-1.350)

Model 15 2.406 2.387 2.383 2.313

(-1.650)† (-1.337) (-0.327) (-0.938)
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Table 3: Predictive Performance of Various Models for Output, Employment and Sales

Variables3

Forecast Horizon (h) 1 3 12 24

Panel A: Industrial Production

Model 1 2.226 2.459 3.114 2.871

Model 2 2.471 2.490 2.811 2.797

(-1.529) (-0.192) (1.343) (0.673)

Model 3 4.267 3.931 4.541 5.528

(-4.910)† (-3.142)† (-3.165)† (-4.884)†

Model 4 2.804 2.655 2.785 2.708

(-3.270)† (-1.093) (1.436) (1.417)

Model 5 2.284 2.478 3.100 2.747

(-0.419) (-0.147) (0.081) (0.560)

Model 6 2.682 2.623 2.795 2.688

(-2.613)† (-1.039) (1.383) (1.584)

Model 7 2.678 2.352 2.708 2.620

(-2.563)† (0.948) (1.752)* (1.853)*

Model 8 2.719 2.652 2.737 2.584

(-2.542)† (-1.210) (1.598) (2.195)*

Model 9 2.445 2.406 2.912 2.681

(-1.542) (0.447) (0.803) (1.504)

Model 10 2.666 2.164 2.758 2.846

(-2.474)† (2.155)* (1.565) (0.232)

Model 11 2.512 2.291 2.654 2.609

(-1.911)† (1.268) (1.784)* (1.852)*

Model 12 2.594 2.615 2.737 2.584

(-2.009)† (-0.976) (1.598) (2.195)*

Model 13 2.445 2.402 2.912 2.681

(-1.542) (0.490) (0.803) (1.504)

Model 14 2.453 2.123 2.758 2.846

(-1.445) (2.445)* (1.565) (0.232)

Model 15 2.502 2.240 2.654 2.609

(-1.840)† (1.608) (1.784)* (1.852)*
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Table 3 Continued

Panel B: Personal Income Less Transfers

Model 1 5.919 5.841 5.660 6.235

Model 2 7.167 6.811 5.576 5.994

(-1.444) (-1.522) (0.293) (1.841)*

Model 3 15.316 12.858 6.533 10.327

(-2.046)† (-1.697)† (-0.534) (-1.459)

Model 4 6.408 6.028 5.225 6.083

(-0.725) (-0.927) (1.627) (1.587)

Model 5 6.030 6.028 5.642 6.148

(-0.292) (-1.125) (0.118) (1.117)

Model 6 6.373 5.996 5.298 6.071

(-0.674) (-0.790) (1.513) (1.889)*

Model 7 6.570 6.249 5.518 6.027

(-0.941) (-1.328) (0.418) (2.272)*

Model 8 6.368 5.991 5.300 6.075

(-0.666) (-0.764) (1.505) (1.840)*

Model 9 6.334 6.147 5.690 6.132

(-0.741) (-2.102)† (-0.074) (0.969)

Model 10 6.569 6.077 5.363 6.026

(-0.734) (-0.834) (0.940) (1.581)

Model 11 6.336 6.057 5.358 6.042

(-0.610) (-0.782) (1.347) (1.887)*

Model 12 6.766 6.674 5.490 6.075

(-1.268) (-1.327) (0.767) (1.840)*

Model 13 6.659 6.791 5.920 6.150

(-1.220) (-1.589) (-0.676) (1.004)

Model 14 7.164 6.809 5.587 6.007

(-1.440) (-1.491) (0.269) (1.548)

Model 15 6.649 6.796 5.482 6.042

(-1.022) (-1.417) (0.936) (1.887)*



REFERENCES 499

Table 3 Continued

Panel C: Nonagricultural Employment

Model 1 1.893 1.693 3.587 3.279

Model 2 1.135 1.471 3.446 3.626

(4.013)* (1.323) (0.561) (-1.836)†

Model 3 1.655 1.571 3.685 6.021

(0.991) (0.542) (-0.239) (-5.224)†

Model 4 2.203 2.134 3.607 3.424

(-1.460) (-2.614)† (-0.079) (-0.970)

Model 5 2.360 2.441 3.345 2.726

(-2.191)† (-3.580)† (0.977) (3.068)*

Model 6 2.102 2.032 3.566 3.408

(-0.982) (-2.115)† (0.090) (-0.866)

Model 7 2.235 2.102 3.177 2.992

(-1.323) (-2.570)† (1.569) (2.170)*

Model 8 2.090 2.024 3.547 3.426

(-0.929) (-2.073)† (0.170) (-0.986)

Model 9 2.223 2.219 3.385 2.772

(-1.635) (-3.206)† (0.786) (2.767)*

Model 10 1.772 1.632 3.311 3.657

(0.574) (0.333) (1.066) (-2.064)†

Model 11 2.084 2.009 3.029 2.784

(-0.935) (-2.081)† (2.256)* (3.210)*

Model 12 1.275 1.719 3.547 3.426

(3.526)* (-0.187) (0.170) (-0.986)

Model 13 1.327 1.744 3.385 2.772

(3.691)* (-0.428) (0.786) (2.767)*

Model 14 1.128 1.406 3.311 3.657

(4.087)* (1.546) (1.066) (-2.064)†

Model 15 1.257 1.695 3.029 2.784

(3.825)* (-0.015) (2.256)* (3.210)*
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Table 3 Continued

Panel D: Manufacturing and Trade Sales

Model 1 7.001 8.243 8.603 8.187

Model 2 7.294 7.729 8.075 7.920

(-0.639) (1.802)* (1.494) (0.912)

Model 3 21.172 12.915 15.844 18.207

(-5.572)† (-3.449)† (-4.636)† (-5.484)†

Model 4 7.811 8.132 8.076 7.881

(-1.696)† (0.447) (1.461) (1.073)

Model 5 7.885 7.787 8.292 8.425

(-1.239) (2.022)* (0.734) (-0.914)

Model 6 7.541 7.808 8.074 7.925

(-1.197) (1.895)* (1.451) (0.915)

Model 7 7.706 7.890 8.183 8.420

(-1.359) (1.643) (1.083) (-0.907)

Model 8 7.429 7.795 8.079 7.926

(-0.959) (1.955)* (1.447) (0.910)

Model 9 7.199 7.836 8.148 8.033

(-0.458) (1.589) (1.128) (0.602)

Model 10 7.571 7.895 8.091 7.964

(-1.109) (1.546) (1.424) (0.763)

Model 11 7.465 7.917 8.092 7.984

(-1.019) (1.585) (1.237) (0.687)

Model 12 7.429 7.795 8.079 7.926

(-0.959) (1.955)* (1.447) (0.910)

Model 13 7.199 7.836 8.013 8.033

(-0.458) (1.589) (1.422) (0.602)

Model 14 7.195 7.895 8.091 7.964

(-0.398) (1.546) (1.424) (0.763)

Model 15 7.465 7.917 8.092 7.984

(-1.019) (1.585) (1.237) (0.687)

1Proxies that were frequently selected using the A( j) and M( j) tests, and the frequencies

with which they were selected, are given in this table. The second column under “Trans”

indicates the data transformation that was performed to induce stationarity, lv means no

transformation; the series was left at level. ∆lv means first difference of the level. log means

the natural log function was applied to the data. ∆ log means the series was first differenced

after the natural log function was applied. Empty entries in the fourth column under M( j)

indicate that the respective variables were not selected at all by the M( j) test.

2Primary entries in this table are mean square forecast errors (MSFEs) based upon recur-
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sively constructed ex ante predictions for the period 1960:01-2003:12, using Models 1-15 (see

Table 1 for an explanation of the different models). Bracketed entries are MSFE type Diebold

and Mariano (DM: 1995) predictive accuracy test statistics, where Model 1 is compared with

each of the other models). Entries in bold indicate instances where the alternative model (i.e.

each of Models 2-15) outperforms the factor model (i.e. Model 1), as indicated by both a

lower MSFE and a positive DM test statistic. Boxed MSFE entries represent the lowest MSFE

value among all models, for a particular forecast horizon, h. DM statistic entries with a ∗ sign

indicate instances where the respective alternative model significantly outperforms the factor

model at a 10% significance level, whereas for entries with a † sign, the factor model signif-

icantly outperforms the alternative model at a 10% significance level, under the assumption

that the DM test statistic has a standard normal limiting distribution (see above for further

discussion).

3See notes to Table 2.


