Special Issue on Complex Analysis: Theory and Applications dedicated to Professor Hari M. Srivastava, on the occasion of his $70^{\text {th }}$ birthday Quasi-Hadamard Product of Certain Meromorphic P-Valent Analytic Functions

S. P. Goyal ${ }^{1, *}$, Pranay Goswami ${ }^{2}$
${ }^{1}$ Department of Mathematics, University of Rajasthan, Jaipur-302055, India
${ }^{2}$ Department of Mathematics, Amity University Rajasthan, Jaipur-302002, India

Abstract. In this paper, we establish certain results concerning the quasi-Hadamard product for the classes related to meromorphic p-valent analytic functions with positive coefficients.
2000 Mathematics Subject Classifications: 30C45
Key Words and Phrases: Analytic functions, Meromorphic p-valent functions, quasi-Hadamard product

1. Introduction

Throughout this paper, let $p \in \mathbb{N}=\{1,2,3, \ldots\}$ and the functions of the form :

$$
\begin{array}{ll}
\varphi(z)=a_{p} z^{p}-\sum_{n=1}^{\infty} a_{n+p} z^{n+p} & \left(a_{p}>0 ; a_{p+n} \geq 0\right) \\
\psi(z)=b_{p} z^{p}-\sum_{n=1}^{\infty} b_{n+p} z^{n+p} & \left(a_{p}>0 ; b_{p+n} \geq 0\right)
\end{array}
$$

be analytic and p-valent in the unit disc $\Delta=\{z:|z|<1\}$. Also, let

$$
\begin{equation*}
f(z)=\frac{a_{p-1}}{z^{p}}+\sum_{n=1}^{\infty} a_{n+p-1} z^{n+p-1}\left(a_{p}>0 ; a_{p+n} \geq 0\right) \tag{1}
\end{equation*}
$$

[^0]\[

$$
\begin{gather*}
f_{i}(z)=\frac{a_{p-1, i}}{z^{p}}+\sum_{n=1}^{\infty} a_{n+p-1, i} z^{n+p-1}\left(a_{p, i}>0 ; a_{p+n, i} \geq 0\right), \tag{2}\\
g(z)=\frac{b_{p-1}}{z^{p}}+\sum_{n=1}^{\infty} b_{n+p-1} z^{n+p-1}\left(b_{p}>0 ; b_{p+n} \geq 0\right), \tag{3}
\end{gather*}
$$
\]

and

$$
\begin{equation*}
g_{i}(z)=\frac{b_{p-1, i}}{z^{p}}+\sum_{n=1}^{\infty} b_{n+p-1, i} z^{n+p-1}\left(b_{p, i}>0 ; b_{p+n, i} \geq 0\right) \tag{4}
\end{equation*}
$$

be analytic and p-valent in the punctured disc $\Delta^{*}=\{z: 0<|z|<1\}$.
Let $\sum \mathscr{S} \mathscr{T}_{0}^{*}(p, \alpha)$ denote the class of functions $f(z)$ defined by (1) and satisfy the condition

$$
\begin{equation*}
-\operatorname{Re}\left\{1+\frac{z f^{\prime}(z)}{f(z)}\right\}>\alpha, \quad\left(z \in \Delta^{*}\right) \tag{5}
\end{equation*}
$$

and $\sum \mathscr{C}_{0}^{*}(p, \alpha)$ denote the class of functions $f(z)$ defined by (1) and satisfy the condition

$$
\begin{equation*}
-\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\alpha, \quad\left(z \in \Delta^{*}\right) \tag{6}
\end{equation*}
$$

where $0 \leq \alpha<p$.
The quasi-Hadamard product of two or more functions has recently been defined and used by Kumar ([7],[8], and [9]), Aouf et al. [3], Hossen [6], Darwish [4] and Sekine [12]. Accordingly, the quasi-Hadamard product of two functions $\varphi(z)$ and $\psi(z)$ is defined by

$$
\begin{equation*}
(\varphi * \psi)(z)=a_{p} b_{p} z^{p}-\sum_{n=1}^{\infty} a_{n+p} b_{n+p} z^{n+p} \tag{7}
\end{equation*}
$$

Aouf [1] defined the Hadamard product of two meromorphic p-valent functions $f(z)$ and $g(z)$ by

$$
\begin{equation*}
(f * g)(z)=\frac{a_{p-1} b_{p-1}}{z^{p}}+\sum_{n=1}^{\infty} a_{n+p-1} b_{n+p-1} z^{n+p-1} \tag{8}
\end{equation*}
$$

Similarly, we can define the Hadamard product of more than two meromorphic p-valent functions.

Let $\lambda(z)$ be a fixed function of the form

$$
\begin{equation*}
\lambda(z)=\frac{c_{p-1}}{z^{p}}+\sum_{n=1}^{\infty} c_{n+p-1} z^{n+p-1} \quad\left(c_{p}>0 ; c_{p+n} \geq 0\right) \tag{9}
\end{equation*}
$$

Using the function defined by (9), we now define the following new classes

Definition 1. A function $f(z) \in \sum \mathscr{M}_{\lambda}^{0}\left(c_{n+p-1}, \delta\right)\left(c_{n+p-1} \geq c_{p}>0 ; n \geq 2\right)$ if and only if

$$
\begin{equation*}
\sum_{n=1}^{\infty} c_{n+p-1} a_{n+p-1} \leq \delta a_{p-1} \tag{10}
\end{equation*}
$$

where $\delta>0$.
Definition 2. A function $f(z) \in \sum \mathscr{B}_{\lambda}^{k}\left(c_{n+p-1}, \delta\right)\left(c_{n+p-1} \geq c_{p}>0 ; n \geq 2\right)$ if and only if

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\frac{n+p-1}{p}\right)^{k} c_{n+p-1} a_{n+p-1} \leq \delta a_{p-1} \tag{11}
\end{equation*}
$$

where $\delta>0$.
It is easy to check that various subclasses of meromorphic and multivalent functions can be (studied by various authors) represented as $\sum \mathscr{B}_{\lambda}^{k}\left(c_{n+p-1}, \delta\right)$ for suitable choices of c_{n}, δ and k. For example:
(1) $\sum \mathscr{B}_{\lambda}^{k}((n+2 p-1)+\beta(n+2 \alpha-1), 2 \beta(p-\alpha)) \equiv \sum_{k}^{*}(p, \alpha, \beta)$
(2) $\sum_{\mathscr{B}_{\lambda}^{0}}((n+2 p-1)+\beta(n+2 \alpha-1), 2 \beta(p-\alpha)) \equiv \sum_{i}^{k} S_{0}^{*}(p, \alpha, \beta)$
(3) $\sum_{\sum} \mathscr{B}_{\lambda}^{1}((n+2 p-1)+\beta(n+2 \alpha-1), 2 \beta(p-\alpha)) \equiv \sum C_{0}^{*}(p, \alpha, \beta)$
(4) $\sum \mathscr{B}_{\lambda}^{k}\left((n(1+\beta)+(2 \alpha-1) \beta+1,2 \beta(1-\alpha)) \equiv \sum S_{0}^{*}(k, \alpha, \beta)\right.$ for $\mathrm{p}=1$
(5) $\sum \mathscr{B}_{\lambda}^{k}(n(n(1+\beta)+(2 \alpha-1) \beta+1), 2 \beta(1-\alpha)) \equiv \sum C_{0}^{*}(k, \alpha, \beta)$ for $\mathrm{p}=1$

The classes $\sum_{k}^{*}(p, \alpha, \beta), \sum S_{0}^{*}(p, \alpha, \beta)$ and $\sum C_{0}^{*}(p, \alpha, \beta)$ have been studied by Aouf [1] and the classes $\sum S_{0}^{*}(k, \alpha, \beta)$ and $\sum C_{0}^{*}(k, \alpha, \beta)$ have been studied by El-Ashwah and Aouf [5].

Evidently, $\sum \mathscr{B}_{\lambda}^{0}\left(c_{n+p-1}, \delta\right) \equiv \sum \mathscr{M}_{\lambda}^{0}\left(c_{n+p-1}, \delta\right)$. Further, $\sum \mathscr{B}_{\lambda}^{k}\left(c_{n+p-1}, \delta\right) \subset \sum \mathscr{B}_{\lambda}^{h}\left(c_{n+p-1}, \delta\right)$ if $k>h \geq 0$, the containment being proper. Moreover, for any positive integer k we have the following inclusion relation
$\sum \mathscr{B}_{\lambda}^{k}\left(c_{n+p-1}, \delta\right) \subset \sum \mathscr{B}_{\lambda}^{k-1}\left(c_{n+p-1}, \delta\right) \subset \ldots \subset \sum \mathscr{M}_{\lambda}^{0}\left(c_{n+p-1}, \delta\right) \subset \sum \mathscr{C}_{0}^{*}(p, \alpha) \subset \sum \mathscr{S}_{0}^{*}(p, \alpha)$.
We also note that for every nonnegative real number k, the class $\sum \mathscr{B}_{\lambda}^{k}\left(c_{n+p-1}, \delta\right)$ is nonempty as the functions of the form

$$
f(z)=\frac{a_{p-1}}{z^{p}}+\sum_{n=1}^{\infty}\left(\frac{p}{n+p-1}\right)^{k} \frac{\delta a_{p+n-1}}{c_{p+n-1}} \mu_{n+p-1} z^{n+p-1} \quad\left(a_{p}>0 ; a_{p+n} \geq 0\right)
$$

where $a_{p-1}>0, \mu_{n+p-1} \geq 0$ and $\sum_{n=1}^{\infty} \mu_{n+p-1} \leq 1$, satisfy the inequality (11).
In this paper we establish a theorem concerning the quasi-Hadamard product of functions in the classes $\sum \mathscr{M}_{\lambda}^{0}\left(c_{n+p-1}, \delta\right)$ and $\sum \mathscr{B}_{\lambda}^{k}\left(c_{n+p-1}, \delta\right)$. The theorem and its applications generalize the results obtained by Aouf [1], Mogra [11] and El-Ashwah and Aouf [5].

2. Main Theorem

Theorem 1. Let the functions $f_{i}(z)$ defined by (2) belong to the class $\sum \mathscr{B}_{\lambda}^{k}\left(c_{n+p-1}, \delta\right)$ for every $i=1,2, \ldots, m$, and let the functions $g_{j}(z)$ defined by (4) belong to the class $\sum \mathscr{M}_{\lambda}^{0}\left(c_{n+p-1}, \delta\right)$ for every $j=1,2, \ldots, q$. If $c_{n+p-1} \geq\left(\frac{n+p-1}{p}\right) \delta$, then the quasi-Hadamard product $f_{1} * f_{2} * \ldots * f_{m} * g_{1} * g_{2} * \ldots * g_{q}(z)$ belongs to the class $\sum \mathscr{B}_{\lambda}^{(k+1) m+q-1}\left(c_{n+p-1}, \delta\right)$.

Proof. Let $h(z):=f_{1} * f_{2} * \ldots * f_{m} * g_{1} * g_{2} * \ldots * g_{q}(z)$, then

$$
\begin{equation*}
h(z)=\frac{\left\{\prod_{i=1}^{m} a_{p-1, i} \prod_{j=1}^{q} b_{p-1, j}\right\}}{z^{p}}+\sum_{n=1}^{\infty}\left\{\prod_{i=1}^{m} a_{n+p-1, i} \prod_{j=1}^{q} b_{n+p-1, j}\right\} z^{n+p-1} . \tag{12}
\end{equation*}
$$

It is sufficient to show that

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\frac{n+p-1}{p}\right)^{m(k+1)+q-1} \prod_{i=1}^{m} a_{n+p-1, i} \prod_{j=1}^{q} b_{n+p-1, j} \leq \delta \prod_{i=1}^{m} a_{p-1, i} \prod_{j=1}^{q} b_{p-1, j} \tag{13}
\end{equation*}
$$

Since $f_{i}(z) \in \sum \mathscr{B}_{\lambda}^{k}\left(c_{n+p-1}, \delta\right)$, we have

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\frac{n+p-1}{p}\right)^{k} c_{n+p-1} a_{n+p-1, i} \leq \delta a_{p-1, i} \tag{14}
\end{equation*}
$$

for every $i=1,2, \ldots, m$. Therefore,

$$
\begin{equation*}
a_{n+p-1, i} \leq\left(\frac{n+p-1}{p}\right)^{-k}\left(\frac{\delta}{c_{n+p-1}}\right) a_{p-1, i} \tag{15}
\end{equation*}
$$

which by virtue of the condition (given with the theorem) implies that

$$
\begin{equation*}
a_{n+p-1, i} \leq\left(\frac{n+p-1}{p}\right)^{-k-1} a_{p-1, i} \tag{16}
\end{equation*}
$$

for every $i=1,2, \ldots, m$. Further, since $g_{j}(z) \in \sum \mathscr{M}_{\lambda}^{0}\left(c_{n+p-1}, \delta\right)$, we have

$$
\begin{equation*}
\sum_{n=1}^{\infty} c_{n+p-1} b_{n+p-1, j} \leq \delta b_{p-1, j} \tag{17}
\end{equation*}
$$

for every $j=1,2, \ldots, q$. Hence we obtain

$$
\begin{equation*}
b_{n+p-1, j} \leq\left(\frac{n+p-1}{p}\right)^{-1} b_{p-1, j} \tag{18}
\end{equation*}
$$

Using (16) for $i=1,2, \ldots, m$, and (18) for $j=1,2, \ldots, q-1$, and (17) for $j=q$, we get

$$
\begin{gathered}
\sum_{n=1}^{\infty}\left[\left(\frac{n+p-1}{p}\right)^{m(k+1)+q-1} c_{n+p-1}\left\{\prod_{i=1}^{m} a_{n+p-1, i} \prod_{j=1}^{q} b_{n+p-1, j}\right\}\right] \\
\leq \sum_{n=1}^{\infty}\left[\left(\frac{n+p-1}{p}\right)^{m(k+1)+q-1}\left(\frac{n+p-1}{p}\right)^{-m(k+1)}\left(\frac{n+p-1}{p}\right)^{-(q-1)}\right. \\
\\
\left.\left\{\prod_{i=1}^{m} a_{p-1, i} \prod_{j=1}^{q-1} b_{n+p-1, j}\right\} c_{n+p-1} b_{n+p-1, q}\right] \\
= \\
\left(\prod_{i=1}^{m} a_{p-1, i} \prod_{j=1}^{q-1} b_{p-1, j}\right)\left(\sum_{n=1}^{\infty} c_{n+p-1} b_{n+p-1, q}\right) \\
\leq \delta \prod_{i=1}^{m} a_{p-1, i} \prod_{j=1}^{q} b_{p-1, j}(\text { by (17)) }
\end{gathered}
$$

Hence $h(z) \in \sum \mathscr{B}_{\lambda}^{(k+1) m+q-1}\left(c_{n+p-1}, \delta\right)$. This completes the proof of the Theorem 1.
Taking $k=0$ in the proof of the above theorem, we obtain
Corollary 1. Let the functions $f_{i}(z)$ defined by (2) and the functions $g_{j}(z)$ defined by (4) belong to the class $\sum \mathscr{M}_{\lambda}^{0}\left(c_{n+p-1}, \delta\right)$ for every $i=1,2, \ldots, m$, and $j=1,2, \ldots, q$. If
$c_{n+p-1} \geq\left(\frac{n+p-1}{p}\right) \delta$, then the quasi-Hadamard product $f_{1} * f_{2} * \ldots * f_{m} * g_{1} * g_{2} * \ldots * g_{q}(z)$ belongs to the class $\sum \mathscr{B}_{\lambda}^{m+q-1}\left(c_{n+p-1}, \delta\right)$.

Now taking into account the quasi-Hadamard product functions $g_{1}(z) * g_{2}(z) * \ldots * g_{q}(z)$ only, in the proof of the above theorem, and using (18) for $j=1,2,3 \ldots, q-1$, and (17) for $j=m$, we obtain
Corollary 2. Let the functions $g_{j}(z)$ defined by (4) belong to the class $\sum \mathscr{M}_{\lambda}^{0}\left(c_{n+p-1}, \delta\right)$ for $j=1,2, \ldots, q$. If $c_{n+p-1} \geq\left(\frac{n+p-1}{p}\right) \delta$, then Hadamard product $g_{1} * g_{2} * \ldots * g_{q}(z)$ belongs to the class $\sum \mathscr{B}_{\lambda}^{q-1}\left(c_{n+p-1}, \delta\right)$.

Remark 1.

(i) Putting $c_{n+p-1}=(n+2 p-1)+\beta(n+2 \alpha-1)$ and $\delta=2 \beta(p-\alpha)$ in the above theorem, we obtain the results obtained by Aouf [1].
(ii) Putting $p=1, c_{n}=n((n+1)+\beta(n+2 \alpha-1))$ and $\delta=2 \beta(1-\alpha)$ in the above theorem, we obtain the results obtained by Mogra [11].
(iii) Putting $p=1$, in Corollary 2, we obtain the results obtained by El-Ashwah and Aouf [5].

ACKNOWLEDGEMENTS The first author (S P G) is thankful to CSIR, New Delhi, India for awarding Emeritius Scientist under scheme No. 21(084)/10/EMR-II.

References

[1] M.K. AOUF, Hadamard product of certain meromorphic p-valent starlike functions and meromorphic p-valent convex functions, J. Inq. Pure Appl. Math (JIPAM), 10(2), Article 43, 7 pp. 2009.
[2] M.K. AOUF and H.E. DARWISH, Hadamard product of certain meromorphic univalent functions with positive coefficients, South. Asian Bull. Math., 30, 23-28. 2006.
[3] M.K. AOUF, A. SHAMANDY and M.F. YASSEN, Quasi-Hadamard product of p-valent functions, Commun. Fac. Sci. Univ. Ank. Series A1, 44, 35-40. 1995
[4] H.E. DARWISH, The quasi-Hadamard product of certain starlike and convex functions, Appl. Math. Letters, 20, 692-695. 2007.
[5] R.M. El-Ashwah and M.K. Aouf, Hadamard product of certain meromorphic starlike and convex functions, Computers Math. Appl., 57, 1102-1106. 2009.
[6] H.M. HOSSEN, Quasi-Hadamard product of certain p-valent functions, Demonstratio Math., 33(2), 277-281. 2000
[7] V. KUMAR, Hadamard product of certain starlike functions, J. Math. Anal. Appl., 110, 425-428. 1985
[8] V. KUMAR, Hadamard product of certain starlike functions II, J. Math. Anal. Appl., 113, 230-234. 1986
[9] V. KUMAR, Quasi-Hadamard product of certain univalent functions, J. Math. Anal. Appl., 126, 70-77. 1987.
[10] M.L. MOGRA,Meromorphic multivalent functions with positive coefficients. I, Math. Japon. 35(1), 1-11. 1990.
[11] M.L. MOGRA, Hadamard product of certain meromorphic starlike and convex functions, Tamkang J. Math., 25(2), 157-162. 1994.
[12] T. SEKINE, On quasi-Hadamard products of p-valent functions with negative coefficients in: H. M. Srivastava and S. Owa (Editors), Univalent Functions, Fractional Calculus, and Their Applications, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 317-328. 1989.

[^0]: *Corresponding author.
 Email addresses: somprg@gmail.com (S. Goyal), pranaygoswami83@gmail.com (P. Goswami)
 (c) 2010 EJPAM All rights reserved.

