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Abstract. In this paper we introduce and develop two different novel multivariate regression models with
Power Exponential (PE) random errors for the first time. Our first model assumes that the observations are
independent and the second model assumes that the observations are dependent. These two models coincide
only when the shape parameter of the multivariate Power Exponential (MPE) distribution is equal to one
which corresponds to the multivariate normal distribution. We develop method of moments (MOM) and the
maximum likelihood (ML) methods to estimate the model parameters. The model selection criteria such
as AIC and ICOMP(IFIM) for both models are derived. Two simulation examples and a real example on a
benchmark data set are given to show the applications of these two models in subset selection of the best
predictors. A genetic algorithm (GA) approach is used to obtain the estimates of the model parameters and
to carry out the subset selection of the best predictors under these two different model types.

Key words: Multivariate Power Exponential Distribution, Multivariate Regression, AIC, ICOMP, Model
Selection, Genetic Algorithm.

1. Introduction and Objectives

During the past fifty years, multivariate normal distribution has enjoyed a significant role in
the development of many important multivariate modeling techniques including the multivariate
regression models. In many practical applications such as in behavioral and social sciences, bio-
metrics, chemometrics, econometrics, environmental sciences, and financial modeling to name a
few, we cannot any longer assume the multinormality on the set of dependent variables or the
random error term of the model. Real data often show significant departures from normality and
normality may not be tenable, especially when the tails are thicker or thinner than those of nor-
mal distributions. For this reason, to achieve more flexibility in statistical modeling and model
selection, and to robustify many multivariate statistical procedures, the purpose of this paper is to
develop novel techniques in multivariate regression models for nonnormal data under the general
class of: Multivariate Power Exponential (PE) distributions by broadening the usual multivariate
normal assumption on the random errors under various assumptions. In regression models, the
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random error terms are generally assumed to be normally distributed. However, since data of-
ten are non-normal, the normality assumption is not always tenable especially when the tails are
thicker or thinner than those of normal distributions. The Power Exponential (PE) distribution
family which is introduced by Subbotin ( [32]) and popularized by Box and Tiao ( [6]), has been
used in modeling economic and financial data as a generalization of normal distribution in recent
years (e.g. [28, 33, 34]). Gómez-Villegas and Sá nchez-Manzano et al. ( [20, 31]) proposed multi-
variate and matrix generalizations of the PE family of distributions and studied their properties in
relation to multivariate Elliptically Contoured (EC) distributions.

Zeckhauser and Thompson ( [36]) were probably the first who attempted to study the simple
multiple linear regression model with PE error terms in a short but an incomplete paper. Liu and
Bozdogan ( [23]) developed a GA on GA (or GA engineering) approach for PE multiple regression
and subset selection of variables with information-theoretic complexity (ICOMP) criterion. The
closed form expressions of the inverse Fisher Information Matrix (IFIM) and ICOMP(IFIM) for
PE multiple linear regression models were also given. Finding proper criterion or measure for
the comparison of competing models is important to select correct regression models. AIC-type
criteria ( [2–5]) are the most widely used information-based criteria for model selection in recent
years. However, the penalty term used in AIC-type criteria is insufficient to measure the model
complexity which has been cited by many authors (see, e.g. [29]). Bozdogan’s ICOMP criteria (
[7,9,10,12–14]) improve AIC-type criteria by using an information-theoretic measure of “overall”
model complexity based on the generalized covariance complexity index of van Emden ( [16]).
ICOMP(IFIM) is the most general form of ICOMP.

In this paper, we extend the work of Liu and Bozdogan ( [23]) and study the multivariate
regression models with PE random errors under various assumptions. As a short hand notation,
we abbreviate these models as MVPER models. We develop and use the genetic algorithms (GAs)
for both the parameter estimation of the models and for subset selection of best predictors with
information criteria as our fitness function. We note that, in the literature, this work seems to be the
first to attempt to study MVPER models utilizing modern optimization techniques such the GAs
and information criteria as our fitness function. More specifically, we consider the multivariate
regression model:

Yn×p = Xn×qBq×p +En×p, p+ q ≤ n, rank(X) = q (1.1)

where Y = [y1,y2, · · · ,yp] = [y(1),y(2), · · · ,y(n)]′ is the matrix of n observations on p re-
sponse variables. X = [x1,x2, · · · ,xq] = [x(1),x(2), · · · ,x(n)]′ is the matrix of (n× q) constant
terms on non-stochastic predictor variables, B = [b1,b2, · · · ,bp] = [b(1),b(2), · · · ,b(q)]′ is the
coefficient matrix and E = [ε1, ε2, · · · , εp] = [ε(1), ε(2), · · · , ε(n)]′ is the unobservable random
error term matrix. The error terms are assumed to be multivariate PE rather than normal. Ap-
plying the vector operator V ec(·) ( [30, p.21]) to (1.1), the multivariate regression model can be
transformed to a univariate regression problem given by

V ec(Y ′) = V ec(B′X ′) + V ec(E′) = (X ⊗ Ip)V ec(B′) + V ec(E′) (1.2)

or
ynp×1 = (X ⊗ Ip)bpq×1 + εnp×1 (1.3)
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where ynp×1 = [y′(1),y
′
(2), · · · ,y′(n)]

′, bpq×1 = [b′(1),b
′
(2), · · · ,b′(q)]′ and εnp×1 = [ε′(1), ε

′
(2), · · · , ε′(n)]

′.
Ip is the (p × p) dimensional identity matrix. ⊗ is Kronecker product operator ( [30, p.12]). In
this paper, we let V ec′(·) denote (V ec(·))′.

The rest of the paper is organized as follows. In Section 2, we introduce the multivariate PE
distribution. In Section 3, we study Type I MVPER model and in Section 4 we study Type II
MVPER model which takes the dependency structure of the data into account. Section 5 gives the
derivation of AIC and ICOMP(IFIM) for these two types of MVPER models. Section 6 outlines
and presents the general background of the Genetic Algorithms (GAs). In Section 7, we give two
simulation examples and a real model selection example on a benchmark macro-economic data in
subset selection of best predictors under both the Type I and Type II MVPER models to illustrate
the versatility of our new approach. Section 8 concludes the paper.

2. Multivariate PE Distributions

A random variable z is PE distributed if the density function of z is

f(z;µ, σ, β) =
1

σ Γ
(
1 + 1

2β

)
21+ 1

2β

exp

(
−1

2

∣∣∣∣
z − µ

σ

∣∣∣∣
2β

)
, (2.1)

where the parameters −∞ < µ < ∞ and σ > 0 are location and scale parameters, respectively,
and β > 0 is the shape parameter, which is related to the kurtosis parameter. A family of unimodel
symmetric curves with different shapes for different values of β can be represented by the above
density. When β = 0.5, the Laplace distribution, and when β → ∞ the Uniform distribution
arises. Particularly when β = 1, the density becomes normal distribution. So PE distribution can
be seen as a generalized normal distribution. Standard PE distribution is the PE distribution with
mean zero and σ = 1.

According to Gómez et al. ( [20]), a multivariate generalization of the PE family of distribu-
tions, denoted by PEp(µ,Σ, β), is defined as

f(z;µ,Σ, β) =
pΓ(p/2)

πp/2Γ(1 + p
2β )21+p/2β

|Σ|−1/2 exp(−1
2
((z− µ)′−1(z− µ))β) (2.2)

where z = [z1, z2, · · · , zp]′ is a p dimension random vector, µ∈ Rp, Σ is a (p × p) positive
definite symmetric matrix, and β ∈ (0,∞) is the shape parameter. If β is given, this multivari-
ate generalized PE distribution is actually a multivariate Elliptically Contoured (EC) distribution
ECp(µ,Σ, g) with the probability density generator g(t) = exp(−1

2 t
β) ( [18, p.46]). Further, it

is a special case of symmetric Kotz type distribution ( [18, p.76]) with N = 1. When p = 1, (2.2)
reduces to (2.1).

Sánchez-Manzano et al. ( [31]) gave the definition of matrix variate PE distribution. A random
(n × p) matrix Z has a (n × p)-variate PE distribution, denoted as Z ∼ MPEp×n(M,Φ,Σ, β)
with parameters M , a (n× p) matrix; Φ, a (n× n) positive definite matrix; Σ, a (p× p) positive
definite matrix and β ∈ (0,∞) if

V ec(Z ′) ∼ PEnp(V ec(M ′),Φ⊗ Σ, β). (2.3)
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The matrix form of the density function of Z is then given by

f(Z;M,Φ,Σ, β) = k|Φ|−p/2|Σ|−n/2 exp(−1
2
(tr((Z −M)′−1(Z −M)Σ−1))β) (2.4)

where

k =
npΓ(np/2)

πnp/2Γ(1 + np/2β)21+np/2β
.

If Z ∼MPEp×n(M,Φ,Σ, β), then Z ′ ∼MPEn×p(M ′,Σ,Φ, β). Some probabilistic character-
istics of Z are given by:

E[Z] = M,

V ar[V ec(Z ′)] =
21/βΓ(np+2

2β
)

npΓ(np
2β

)
(Φ⊗ Σ),

γ1[Z] = 0,

γ2[Z] =
(np)2Γ(np

2β
)Γ(np+4

2β
)

Γ2(np+2
2β

)
− np(np+ 2),

E[(tr((Z −M)′−1(Z −M)Σ−1))s] =
2s/βΓ(np+2s

2β
)

Γ(np
2β

)
,

where s is a positive integer, γ1 and γ2 are multidimensional asymmetry (skewness) and kurtosis
coefficients ( [26]) defined as

γ1[Z] = E[((V ec(Z ′)− V ec(M ′))′(V ar[V ec(Z ′−1(V ec(Z ′)− V ec(M ′3],
γ2[Z] = E[((V ec(Z ′)− V ec(M ′))′(V ar[V ec(Z ′−1(V ec(Z ′)− V ec(M ′2]

−np(np+ 2).

From the above, it is easy to show that

E[(V ec(Z ′)− V ec(M ′))′(V ar[V ec(Z ′−1(V ec(Z ′)− V ec(M ′))] = np.

For a given β > 0, Z actually is a matrix variate EC distribution denoted as

Z ∼ En,p(M,Φ⊗ Σ,Ψ)

by Gupta and Varga ( [21, p.20, p.26]) with h(t) = k exp(−tβ/2). For n = 1 and Φ = In, Z ′

and Z have the same distribution. The parameters in the definition of a matrix multivariate PE
distribution are not uniquely defined as shown in the following theorem.

Theorem 2.1. LetZ ∼MPEp×n(M1,Φ1,Σ1, β1) and at the same timeZ ∼MPEp×n(M2,Φ2,Σ2, β2).
If Z is non-degenerate, then there exist positive constant c such that M2 = M1, Σ2 = cΣ1,
Φ2 = Φ1/c and β2 = β1.

Proof: The proof follows along the lines given in Gupta and Varga ( [21, p.23]). Since Z is
symmetric about M1 as well as about M2, then M2 = M1. Let M = M1 and

Σl = [lσij ], i, j = 1, · · · , p; l = 1, 2,
Φl = [lφij ], i, j = 1, · · · , n; l = 1, 2.
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Figure 1: Matrix PE density function with n = 1, p = 2, Φ = I1, Σ = I2 and variate β.

Let k(i) denote the p-dimensional vector whose ith entry is 1 and all the others are 0. Let l(i)
denote the n-dimensional vector whose ith entry is 1 and all the others are 0. Since Z is non-
degenerate, it must have an element zi0j0 which is non-degenerate. Since zi0j0 = l′(i0)Zk(j0),
from Theorem 4 of Sánchez-Manzano et al. ( [31]), there are zi0j0 ∼ PE(mi0j0 , 1φi0i01σj0j0 , β1)
and zi0j0 ∼ PE(mi0j0 , 2φi0i02σj0j0 , β2). So we have β2 = β1 and 2φi0i02σj0j0 = 1φi0i01σj0j0 .
From Gupta and Varga ( [21, p.24]), there must be Φ2 ⊗ Σ2 = Φ1 ⊗ Σ1. By the Theorem 1.3.16
of Gupta and Varga ( [21, p.13]), there exists a nonzero real number c such that Σ2 = cΣ1 and
Φ2 = Φ1/c. If Φ2 = Φ1 = Φ, then c = 1 and Σ2 = Σ1. ¤

From the proof of Theorem 2.1, the only case that a matrix multivariate PE distribution is not
uniquely defined is that there exist positive constant c such that Σ2 = cΣ1 and Φ2 = Φ1/c. So if
the parameter Σ or Φ is known, then the distribution is uniquely defined by the other three param-
eters. Therefore, in the rest of this paper, we only consider the case that parameter Φ is known to
handle the uniqueness issue.

An advantage of PE distribution is that it is adaptive to both peakedness and flatness in the
data by varying the values of β. When β increases, the sharpness diminishes. Figure 1 represents
the plot of (2.2) with n = 1, p = 2, Φ = I1, Σ = I2 and the shape parameter β. The relationship
between β and γ2 for the multivariate PE distribution is shown in Figure 2. For β = 1, (2.2) is a
multivariate normal distribution and for β → ∞, (2.2) is a multivariate uniform distribution. We
note that as the dimension of the distribution gets larger, the kurtosis gets larger for both β < 1
and β > 1. What this means is that for large dimensional data sets, we expect heavy fat tails.
Therefore, we should use flexible distributional models to capture the heavy fat tail behavior of
large dimensional data sets.



M. Liu and H. Bozdogan / Eur. J. Pure Appl. Math, 1 (2008), (4-37) 9

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
−10

−5

0

5

10

15

20

25

30

35

40
Relationship between Beta and Kurtosis

K
ur

to
si

s

Beta

p=2 p=3 p=4 p=5 

p=6 

Figure 2: The relationship between β and kurtosis.

3. Type I Multivariate PE Regression Model

In model (1.1), if we assume that the rows of the random error matrix E are drawn indepen-
dently from PEp(0,Σ, β) distribution, i.e., ε(1), ε(2), · · · , ε(n) are i.i.d. and ε(1) ∼ PEp(0,Σ, β),
then y(i) ∼ PEp(B′x(i),Σ, β). We denote the multivariate linear regression model under this
assumption as Type I MVPER model. In this case, the likelihood function is

L(B,Σ, β|Y,X) = k1 exp(−1
2

n∑

i=1

((y(i)−B′x(i))
′Σ−1(y(i)−B′x(i)))

β), (3.1)

where

k1 =
pnΓn(p

2)

πnp/2Γn(1 + p
2β )2n+np

2β

|Σ|−n/2 .

The log likelihood function is

l(B,Σ, β|Y,X) ≡ logL(B,Σ, β|Y,X)
= n log(pΓ(p

2))− np
2 log(π)− n log Γ(1 + p

2β )− n(1 + p/2β) log 2
−n

2 log |Σ| − 1
2

∑n
i=1((y(i)−B′x(i))

′Σ−1(y(i)−B′x(i)))β.
(3.2)

Let θ= (b′, V ec′(Σ), β)′, ε(i) = y(i)−B′x(i) and ti = ε′−1
(i) ε(i). Differentiating (3.2) with respect

to b, V ec(Σ) and β respectively, we have

∂l(θ)
∂b

= β
n∑

i=1

tβ−1
i V ec(Σ−1ε(i)x

′
(i)), (3.3)

∂l(θ)
∂V ec(Σ)

= −n
2
V ec(Σ−1) +

β

2

n∑

i=1

tβ−1
i V ec(Σ−1ε(i)ε

′−1
(i) ), (3.4)
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and
∂l(θ)
∂β

=
np

2β2
ψ(1 +

p

2β
) +

np

2β2
log 2− 1

2

n∑

i=1

tβi log ti, (3.5)

where ψ(·) = d log Γ(x)/dx is called digamma function ( [1]), or psi function. To derive and
construct the Fisher information matrix (FIM) and its inverse IFIM, we have

∂2(θ)
∂b′∂b

= β

n∑

i=1

(Ipq ⊗ V ec′(Ip))(Iq ⊗Mi ⊗ Ip)(V ec(Iq)⊗ Ipq), (3.6)

where

Mi = −tβ−1
i V ec(Σ−1)V ec′(x(i)x

′
(i))− 2(β − 1)tβ−2

i (Σ−1ε(i)x
′
(i))⊗ (Σ−1ε(i)x

′
(i)).

∂2l(θ)
∂V ec′(Σ)∂V ec(Σ)

= (Ip2 ⊗ V ec′(Ip))(Ip ⊗ ∂2l(θ)
∂Σ∂Σ

⊗ Ip)(V ec(Ip)⊗ Ip2)), (3.7)

where
∂2l(θ)
∂Σ∂Σ = n

2V ec(Σ
−1)V ec′−1)

−β
2

n∑
i=1

tβ−1
i (V ec(Σ−1)V ec′−1ε(i)ε

′−1
(i) )

+V ec(Σ−1ε(i)ε
′−1
(i) )V ec′−1))

−β(β−1)
2

n∑
i=1

tβ−2
i (Σ−1ε(i)ε

′−1
(i) )⊗ (Σ−1ε(i)ε

′−1
(i) ).

∂2l(θ)
∂β2 = −np

β3ψ(1 + p
2β )− np2

4β4ψ
′(1 + p

2β )− np
β3 log 2− 1

2

n∑
i=1

tβi log2 ti, (3.8)

where ψ′(·) = d2 log Γ(x)/dx2 is called trigamma function.

∂2l(θ)
∂V ec′(Σ)∂b

= β
n∑

i=1

(Ipq ⊗ V ec′(Ip))(Iq ⊗Ni ⊗ Ip)(V ec(Iq)⊗ Ip2), (3.9)

where
Ni = −tβ−1

i V ec(Σ−1)V ec′−1ε(i)x′(i))
−(β − 1)tβ−2

i (Σ−1ε(i)x
′−1
(i) ε(i)ε

′−1
(i) ).

∂2l(θ)
∂β∂b =

n∑
i=1

tβ−1
i V ec(Σ−1ε(i)x′(i)) + β

n∑
i=1

tβ−1
i log(ti)V ec(Σ−1ε(i)x′(i)). (3.10)

∂2l(θ)
∂β∂V ec(Σ) = 1

2

n∑
i=1

tβ−1
i V ec(Σ−1ε(i)ε

′−1
(i) )

+β
2

n∑
i=1

tβ−1
i log(ti)V ec(Σ−1ε(i)ε

′−1
(i) ).

(3.11)

Some of the details of the above derivations are given in the Appendix. Since there are no
closed form solutions to the likelihood equations, numerical methods such as Genetic Algorithms
or Newton-Raphson iterative method can be used to obtain the maximum likelihood estimators
(MLEs). Here we give a method to compute the method of moments (MOM) estimates which can
be used as the starting values to calculate the MLEs. The steps of MOM are:



M. Liu and H. Bozdogan / Eur. J. Pure Appl. Math, 1 (2008), (4-37) 11

Step 1 : Compute B̂ = (X ′X)−1X ′Y .

Step 2 : Let di = ε′(i)V ar(y(i))−1ε(i). di actually is the squared Mahalanobis distances. By the
probability characteristics of multivariate PE distribution, we have

E[t2i ] =
22/βΓ(p+4

2β )

Γ( p
2β )

.

Then

E[d2
i ] = E[

p2Γ2( p
2β )

22/βΓ2(p+2
2β )

t2i ] =
p2Γ( p

2β )Γ(p+4
2β )

Γ2(p+2
2β )

.

So we can compute β̂ as the solution of

p2Γ( p

2β̂
)Γ(p+4

2β̂
)

Γ2(p+2

2β̂
)

=
1
n

n∑

i=1

d̂2
i

where d̂i = (y(i) − B̂′x(i))′−1(y(i) − B̂′x(i)) and S = (Y − XB̂)′(Y − XB̂)/n is the
sample covariance matrix.

Step 3 : Compute

Σ̂ =
pΓ( p

2β̂
)

21/β̂Γ(p+2

2β̂
)
S.

4. Type II Multivariate PE Regression Model

If we assume that the random error terms V ec(E′) in model (1.2) has a multivariate PE distri-
bution PEnp(0,Φ⊗ Σ, β), i.e., V ec(Y ′) ∼ PEnp((X ⊗ Ip)bpq×1,Φ⊗ Σ, β) or with the matrix
notation Y ∼ MPEn×p(XB,Φ,Σ, β), where Φ is a (n × n) positive definite symmetric matrix
and known, then the density function of E is:

f(E; Φ,Σ, β) = k|Φ|−p/2|Σ|−n/2 exp(−1
2
(tr(Σ−1E′−1E))β) (4.1)

or, the density function of Y is:

f(Y ;B,Φ,Σ, β) = k|Φ|−p/2|Σ|−n/2 exp(−1
2
(tr(Σ−1(Y −XB)′−1(Y −XB)))β). (4.2)

We denote the multivariate regression model under this assumption as Type II MVPER model.
It is noted that Type I and Type II MVPER models coincide only if β = 1 and Φ = In, which
corresponds to the multivariate normal distribution. When Φ = In, each row of E, or Y , are
still considered as an observation of a p dimensional random vector and the n rows have the same
distribution. But the n observations are assumed to be uncorrelated rather than independent from
each other. The identity matrix In reflects the lack of correlation among the observations.
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Under the assumption of Type II MVPER model, the likelihood function is:

L(B,Σ, β) = k|Φ|−p/2|Σ|−n/2 exp(−1
2
(tr(Σ−1(Y −XB)′−1(Y −XB)))β), (4.3)

and the log likelihood function is:

l(B,Σ, β) ≡ logL(B,Σ, β)
= log(npΓ(np

2 ))− np
2 log(π)− log Γ(1 + np

2β )− (1 + np/2β) log 2
−p

2 log |Φ|−n
2 log |Σ| − 1

2(tr(Σ−1(Y −XB)′−1(Y −XB)))β.

(4.4)

Let θ=(b′, V ec′(Σ), β)′. Differentiating (4.4) with respect to b, V ec(Σ) and β respectively, we
have

∂l(θ)
∂b

= V ec((
∂l(θ)
∂B

)′−1E′−1E))β−1V ec(Σ−1E′−1X), (4.5)

∂l(θ)
∂V ec(Σ) = V ec(∂l(θ)

∂Σ )
= −n

2V ec(Σ
−1) + β

2 (tr(Σ−1E′−1E))β−1V ec(Σ−1E′−1E)
(4.6)

and
∂l(θ)
∂β = np

2β2ψ(1 + np
2β ) + np

2β2 log 2
−1

2(tr(Σ−1E′−1E))β log(tr(Σ−1E′−1E)).
(4.7)

To derive and construct the FIM and IFIM of the model parameters, we have

∂l2(θ)
∂b′∂b = ∂

∂b′ (
∂l(θ)
∂b )

= (Ipq ⊗ V ec′(Ip))(Iq ⊗ ∂l2(θ)
∂B′∂B′ ⊗ Ip)(V ec(Iq)⊗ Ipq)

(4.8)

where
∂l2(θ)

∂B′∂B′ = β(tr(Σ−1E′−1E))β−1 ∂(Σ−1E′−1X)
∂B′

+(Σ−1E′−1X)⊗ ∂(β(tr(Σ−1E′−1E))β−1)
∂B′ ,

(4.9)

∂(Σ−1E′−1X)
∂B′ = −V ec(Σ−1)V ec′(X ′−1X) (4.10)

and

∂(β(tr(Σ−1E′−1E))β−1)
∂B′

= −2β(β − 1)(tr(Σ−1E′−1E))β−2Σ−1E′−1X. (4.11)

∂l2(θ)
∂V ec′(Σ)∂V ec(Σ) = (Ip2 ⊗ V ec′(Ip))(Ip ⊗ ∂l2(θ)

∂Σ∂Σ ⊗ Ip)(V ec(Ip)⊗ Ip2) (4.12)

where
∂l2(θ)
∂Σ∂Σ = n

2V ec(Σ
−1)V ec′−1)

−β
2 (tr(Σ−1E′−1E))β−1(V ec(Σ−1)V ec′−1E′−1EΣ−1)

+V ec(Σ−1E′−1EΣ−1)V ec′−1))
−β(β−1)

2 (tr(Σ−1E′−1E))β−2

((Σ−1E′−1EΣ−1)⊗ (Σ−1E′−1EΣ−1)).

(4.13)
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∂l2(θ)
∂β2 = −np

β3ψ(1 + np
2β )− n2p2

4β4 ψ
′(1 + np

2β )− np
β3 log 2

− 1
2(tr(Σ−1E′−1E))β log2(tr(Σ−1E′−1E)).

(4.14)

∂l2(θ)
∂β∂b

= (tr(Σ−1E′−1E))β−1V ec(Σ−1E′−1X)(1 + β log(tr(Σ−1E′−1E))). (4.15)

∂l2(θ)
∂β∂V ec(Σ) = 1

2(tr(Σ−1E′−1E))β−1V ec(Σ−1E′−1EΣ−1)
(1 + β log(tr(Σ−1E′−1E))).

(4.16)

∂l2(θ)
∂V ec′(Σ)∂b

= (Ipq ⊗ V ec′(Ip))(Iq ⊗ ∂l2(θ)
∂Σ∂B′

⊗ Ip)(V ec(Iq)⊗ Ip2) (4.17)

where

∂l2(θ)
∂Σ∂B′ = −β(tr(Σ−1E′−1E))β−1V ec(Σ−1)V ec′−1E′−1X)

−β(β − 1)(tr(Σ−1E′−1E))β−2(Σ−1E′−1X)⊗ (Σ−1E′−1EΣ−1).
(4.18)

Further details of the above derivations are given in the Appendix of the paper.

By the probability characteristics of multivariate PE distribution, we have

E[((V ec(Y ′)− V ec(B′X ′))′V ar(V ec(Y ′−1(V ec(Y ′)− V ec(B′X ′2]

=
(np)2Γ(np

2β
)Γ(np+4

2β
)

Γ2(np+2
2β

)
.v

Then, the method of moment estimate of β, denoted as β̂, can be obtained by solving the equation:

((V ec(Y ′)− V ec(B̂′X ′))′−1(V ec(Y ′)− V ec(B̂′X ′2 =
(np)2Γ(np

2β̂
)Γ(np+4

2β̂
)

Γ2(np+2

2β̂
)

where
S = (V ec(Y ′)− V ec(B̂′X ′))(V ec(Y ′)− V ec(B̂′X ′))′

and
B̂ = (X ′X)−1X ′Y

is the method of moment estimate of B. By Anderson and Fang ( [17, p.215]), the unbiased
estimator of Σ can be obtained as

Σ̂ =
npΓ(np

2β̂
)

(n− q)21/β̂Γ(np+2

2β̂
)
(Y −XB̂)′−1(Y −XB̂).

Under the assumption of Type II MVPER model, indeed the sample size is only 1. According to
Gupta and Varga ( [21, p.224]), the MLEs of the model parameters do not exist without imposing
some restrictions on Σ and Φ even if Φ is known. For n ≥ p, since h(t) = k exp(−tβ/2) is
monotone decreasing on (0,+∞), there is

B̂MLE = B̂
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by Theorem 7.1.1 of ( [21, p.226]) and the MLE of Σ is

Σ̂MLE =
p

λmax
(Y −XB̂)′−1(Y −XB̂)

where λmax is the maximum point of the function

f(λ) = λnp/2h(λ)

by Theorem 7.1.3 of ( [21, p.235]). It is easy now to show that

λmax = (
np

β̂MLE

)1/β̂MLE

by the Lemma 2 of ( [17, p.204]). However, if we substitute Σ̂MLE and B̂MLE into the log
likelihood function (4.4), the log likelihood function of β becomes:

f(β) = log(npΓ(np
2 ))− np

2 log(π)− log Γ(1 + np
2β )− log 2−np

2 log p− p
2 log |Φ|

−n
2 log |(Y −XB̂)′−1(Y −XB̂)|+ np

2β log(np
2β )− np

2β

which actually has no maximum.
We get around this problem by providing two methods to compute the MLEs of Type II

MVPER model parameters. One method is to maximize the log likelihood function directly with
an algorithm such as the GA given in Bozdogan and Liu ( [23]). The other method is to employ a
two step procedure given as follows:

Step 1 : Use a set of m pairs of observations randomly selected from the original data to compute
B̂MLE and Σ̂MLE by considering the shape parameter β fixed.

Step 2 : Substitute B̂MLE and Σ̂MLE obtained in Step 1 and the original sample data into the log
likelihood function (4.4), then β̂MLE is the value of β which maximizes the log likelihood
function of β.

5. Information Criteria for Multivariate PE Regression Models

In recent years, information-based criteria such as Akaike’s AIC ( [2–5]), which compromises
between the goodness-of-fit and the model complexity, have been widely used in statistical model-
ing and model selection. However, the penalty term used in AIC-type criteria, that is, the number
of free parameters, is insufficient to measure the model complexity as noted by many authors (see,
e.g. [29]). ICOMP criteria ( [7, 9, 10, 12–14]) improve AIC-type criteria by using an information-
theoretic measure of “overall” model complexity based on the generalized covariance complexity
index of Van Emden ( [16]). ICOMP criteria can be defined in several ways. The most gen-
eral form of ICOMP, referred to as ICOMP(IFIM), exploits the well-known asymptotic optimality
properties of the MLE’s, and uses the IFIM to measure the complexity of a model. For both types
of criteria, the model with the smallest score is chosen to be the best model.
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For a general multivariate linear or nonlinear model, AIC is defined as:

AIC = −2 logL( θ̂) + 2k (5.1)

where k is the number of free parameters estimated within the model. So for Type I MVPER
model, we have

AICModel I = −2n log(pΓ(p
2)Γ(1 + p

2β̂
)) + np log(π) + 2n(1 + p/2β̂) log 2

+n log |Σ̂|+ ∑n
i=1((y(i)−B̂

′
x(i))

′Σ̂−1(y(i)−B̂
′
x(i)))β̂

+2pq + p(p+ 1) + 2

(5.2)

and for Type II MVPER model, we have

AICModel II

= −2 log(npΓ(np
2 )) + np log(π) + 2 log Γ(1 + np

2β̂
) + (2 + np/β̂) log 2

+p log |Φ|+ n log |Σ̂|+ (tr(Σ̂−1(Y −XB̂)′−1(Y −XB̂)))β̂

+2pq + p(p+ 1) + 2.

(5.3)

The definition of ICOMP(IFIM) uses the concept of maximal covariance complexity which is
defined as:

Definition 5.1 A maximal information theoretic measure of complexity of a covariance matrix
Σ of a multivariate normal distribution is

C1( Σ) ≡ maxT C0(Σ)

= p
2 log( tr( Σ)

p )− 1
2 log | Σ|, (5.4)

where the maximum is taken over the orthonormal transformation T of the overall coordinate
system x1, x2, · · · , xp.

For more details on (5.4), we refer the readers to ( [9,13,14]). For a multivariate normal linear
or nonlinear structural model, we define the general form of ICOMP(IFIM) as

ICOMP (IFIM) = −2 logL(θ̂) + 2C1(F̂−1(θ̂)), (5.5)

where C1 denotes the maximal information-theoretic complexity of F̂−1, the estimated IFIM
given in (5.4), and θ̂ is the MLE vector. So, for Type I MVPER model, we have

ICOM(IFIM)Model I

= −2n log(pΓ(p
2)Γ(1 + p

2β̂
)) + np log(π) + 2n(1 + p/2β̂) log +n log 2|Σ̂|

+
∑n

i=1((y(i)−B̂
′
x(i))

′Σ̂−1(y(i)−B̂
′
x(i)))β̂ + 2C1(F̂−1( θ̂)Model I)

(5.6)

and for Type II MVPER model, we have

ICOM(IFIM)Model II

= −2 log(npΓ(np
2 )) + np log(π) + 2 log Γ(1 + np

2β̂
) + (2 + np/β̂) log 2

+p log |Φ|+ n log |Σ̂|+ (tr(Σ̂−1(Y −XB̂)′−1(Y −XB̂)))β̂

+2C1(F̂−1( θ̂)Model II).

(5.7)
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The estimated observed inverse Fisher Information matrices for Type I and Type II MVPER mod-
els, F̂−1(θ̂)Model I and F̂−1(θ̂)Model II , can be computed from the results of Sections 3 and 4
accordingly by

F̂−1(θ̂) = −




∂l2(θ)
∂b′∂b

∂l2(θ)
∂V ec′(Σ)∂b

∂l2(θ)
∂β∂b

∂l2(θ)
∂b′∂V ec(Σ)

∂l2(θ)
∂V ec′(Σ)∂V ec(Σ)

∂l2(θ)
∂β∂V ec(Σ)

∂l2(θ)
∂b′∂β

∂l2(θ)
∂V ec′(Σ)∂β

∂l2(θ)
∂β2




θ̂

.

Note that the expected Fisher information matrix and its inverse for the Type I and Type II
MVPER models involve complicated forms of expected values that is difficult to compute. There-
fore, in what follows, it suffices for us to use the complexity of the estimated observed inverse-
Fisher Information matrix (IFIM) above in our numerical examples.

6. Genetic Algorithms (GAs)

In this section to be complete and for the benefit of the general readership of the paper, we give
the general background and the working of the Genetic Algorithms (GAs) for estimating model
parameters and model selection contemporaneously.

Genetic Algorithm (GA) (see, e.g., Goldberg ( [19]), Holland ( [22]), Mitchell ( [27])) is a
randomized, population-based heuristic optimization technique that belong to the general class of
Evolutionary algorithms (EAs). GA has significant advantages such that it is independent from
the complexity of the problem at hand, and not likely to be restricted to a local optimal solution,
and it is easy to use in many difficult optimization problems.

Yang and Honavar ( [35]) use GA for the selection of a subset of attributes or features to
represent the patterns to be classified with Neural network (NN). Bozdogan ( [8]) who introduced
the GA in statistical model selection, uses the GA in the multiple regression model for subset
selection of the best predictors for intelligent data mining under the normality assumption.

In GA, the criterion to rank solutions is often called a fitness function. A set of solutions is
called a generation of population. A specific solution is called an individual in the population.
GA improves solutions by generating a new generation of population on the base of current pop-
ulation through a series of GA operators, such as crossover and mutation. The first generation of
population to start the GA process is generated as a set of “wildly’ guessed or randomly generated
solutions. For the GA to evolve, a solution needs to be represented in binary string format. A
binary string represents a solution and it is often called a chromosome.

The individuals in the current population are used to generate the new population. There are
different strategies to generate a new population. One strategy commonly used is the so-called
called “natural” selecting strategy. With this strategy, the chance of an individual being selected is
proportional to the ratio:

rj = ∆Fitnessj/∆Fitness (6.1)

where ∆Fitnessj = FitnessMax − Fitnessj and ∆Fitness is the mean of ∆Fitnessj . The
chance of an individual being selected is proportional to this ratio. In other words, an individual
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with a ratio of two is twice as likely to be selected as an individual with a ratio of one. This
approach is called the proportional selection. There are also other selection strategies such as the
rank order selection, and so forth.

A pair of individuals selected from the current population are used to generate a pair of new
solutions, often called “offsprings”, through the GA operator crossover. Crossover mimics the
process of mating. The pair of chromosomes chosen for crossover is controlled by the crossover
probability (Pc) which is an input parameter of the algorithm. Crossover point, where the binary
string is broken for crossover, is picked randomly along each pair of parent chromosomes. In
the algorithm, we give three choices of crossover types corresponding to different locations of
crossover points. In the following, “|” represents a crossover point.

• Single point crossover

Parent A 10|001001001
↓↑

Parent B 00|010011000
→ Offspring A 10|010011000

Offspring B 00|001001001

• Two point crossover

Parent A 10|001001|001
↓↑

Parent B 00|010011|000
→ Offspring A 10|010011|001

Offspring B 00|001001|000

• Uniform crossover - bits are randomly switched between parents:

Parent A 10001001001
↓↑

Parent B 00010011000
→ Possible offspring A 00000011001

Possible offspring B 10011001000

Mutation is another parameter or operator used in GA to realize a global search. During
mutation, each bit in a binary string can change from 0 to 1, or from 1 to 0, with a user input
probability called the mutation probability (Pm). Hence, the searching process can jump to another
area of the fitness landscape, instead of being limited in a local optimum area.

Our GA also allows the Elitism rule (ER). When the Elitism rule is applied, the best solution of
a generation will be copied without changes to the next generation. ER guarantees the individual
with the best fitness in the current generation to survive in the next generation. In other words, the
best solution is passed from one generation to the next and the survival of the fittest is achieved
until the GA converges.

The outline of the GA procedures for model parameter estimation and model selection is sum-
marized as follows:

Step 1: Create a generation of population with a given population size.

Step 2: Encode the individuals into binary strings.



M. Liu and H. Bozdogan / Eur. J. Pure Appl. Math, 1 (2008), (4-37) 18

Step 3: Rank each individual in the population according to the given fitness function.

Step 4: Select individuals to be used to generate the new population.

Step 5: Do crossover on selected individuals with a given crossover type and crossover probabil-
ity and create a new population.

Step 6: Do mutation on the new population with a given mutation probability.

Step 7: Do GA engineering on the new population with a given engineering probability.

Step 8: Do elitism if required. Elitism means that the best individual in current population is
guaranteed to be included in the new population.

Step 9: Replace the current population with the new population.

Step 10: Repeat Steps 2-9 until a certain condition of the result is satisfied.

The GA for model parameter estimation and the GA for model selection share the shame out-
line above, but with different objective functions (fitness functions) and solution representations.
This reflects one of the significant advantages of GA method. Once a GA is set up, it can be
expanded to solve different problems easily by only changing the fitness function and the repre-
sentation of solution space. We will explain the fitness function and solution representation for
model parameter estimation and model selection in following sections. The GA engineering (or
GA cloning) in Step 7 above is a new GA operator we developed to improve the evolution of
the GA process. This will be explained in Section 6.4. The pseudo code of the steps of the GA
outlined above is given in the Appendix.

6.1. GA for Model Parameter Estimation

We use GA to estimate the maximum likelihood estimators (MLEs) of the multivariate re-
gression model parameters; the coefficients and the estimated inverse-Fisher information matrix
(IFIM) of the model. We use the negative log likelihood function as the fitness function. With this
choice, the best solution is the minimum fitness value.

We encode each model parameter to be estimated in a binary string of fixed length, which is
given by the investigator as an input. Since the parameters are real numbers, we use the following
scheme to encode them. Given a real interval [a, b] and the length of binary string l, the binary
string 000 · · · 000 represents a and 111 · · · 111 represents b. Adding binary 1 to an existing binary
number increases its real value by (b−a)/2l−1. With this approach, decoding a binary string to real
number is easy. For example, if l = 5, then 10010 represents the real value a+(b−a)× 18/31 =
(13a+ 18b)/31.

With the above encoding approach, we first obtain the starting point and search the interval
with other methods, such as the Method of Moments (MOM). Then, we use the GA to estimate
the MLEs.
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6.2. GA for Model Selection

In the GA for model selection, we use the ICOMP(IFIM) as the fitness function. The algorithm
can also be easily edited to use other model selection criteria. We encode each model using the
following scheme.

Each model, or subset, is encoded as a binary string with a fixed length based on the number of
total available independent variables (including the constant term). Each bit in the string is a binary
code indicating the presence (1) or absence (0) of a given predictor variable in the model. For
example, if there are 10 predictor variables available in a given data set, then the string 1010110110
represents a model, where constant term is included in the model, variable 1 is excluded from the
model, variable 2 is included in the model, and so on.

6.3. GA on GA Hybridization

We combine and hybridize the GA for parameter estimation and the GA for model selection
as follows:

• First, the GA for model selection is called to select the best subset of predictor variables.

• At each step a model is chosen to be evaluated. Then the GA for model parameter estimation
is called to obtain the MLEs of the model parameters, or the MLEs are retrieved if the model
has been evaluated before. The fitness, i.e., ICOMP(IFIM) of the model is computed using
the MLEs of the model parameters.

With the GA on GA approach, the output of the GA for estimation is used in the fitness
function (ICOMP) to evaluate the best subset candidate models. The estimation in fact initially
acts as the fitness function of the model selection in GA.

The GA on GA approach inherits both advantages and disadvantages of the general GA. But
the major convenience of the GA on GA approach is that both the estimation and model selection
in GA can share the same GA procedure and code. Only the fitness functions and representations
of the solutions need to be changed correspondingly.

The disadvantage of the GA on GA is that, since the output of the GA for model parameter
estimation is random, the fitness function of the GA for model selection is also random. In this
case, the evaluation of models will be inconsistent during the model selection GA process. For
example, in generation i, if model A is better than model B according to their fitness values, but
in generation j, model B can be better than model A since their fitness changes. To solve this
problem, we remember the fitness and parameter estimation of all evaluated models and retrieve
them when they are needed to keep the evaluation process to be consistent. Our simulation results
show that this approach is practical with GA properly set up and engineered (or cloned). We
further note that the GA on GA approach improves the computational efficiency by eliminating
repeated model parameter estimation process when we evaluate and fit the models.
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6.4. A New GA Operator: GA Engineering

GA engineering is a new operator we developed and introduced to improve the evolution of
the GA process. Since GA is a “random” or “stochastic” search method, it is not guaranteed that
each run of the GA with the same settings will converge to the same optimal solution. With classic
GA operators and the proper setting of the parameters, the bias and variance of MLEs caused by
the GA are usually acceptable according to Chatterjee ( [15]). But for the GA on GA approach,
the bias and variance caused by GA during the estimation of the model parameters will affect the
GA for model selection.

For this reason, we introduce the GA engineering (or GA cloning) operator to improve the es-
timation further. If the population evolves “naturally” with classic GA operators, GA engineering
means to improve the quality of the population “artificially”. The idea of GA engineering comes
from the fact that the difference of the fitness values between the two chromosomes is caused by
the bits with different binary codes in these two chromosomes and the bit in the chromosome with
better fitness are supposed to contain better genes/information. For example, given

Chromosome A 100101110
(Fitness A=10)

Chromosome B 101100101
(Fitness B=20)

→ Different bits in A t t 0 t t1 t 10
Different bits in B t t 1 t t0 t 01

,

tt 0tt1t 10 is supposed to have better genes than tt 1tt0t 01 if a smaller fitness value is
preferred. So, if we compare the best chromosome of generation i with that of generation i + 1,
with probability Pe, and find that they have different binary codes and bits, then we prefer the bits
corresponding to the chromosome which has the smaller fitness value, since we are minimizing
the information criteria to pick the best model. Indeed, our simulation results show that this new
operator does reduce the bias and variance caused by the GA. This we like.

7. Numerical Examples

7.1. Simulation Examples

In the following simulation examples, we use the procedure described by Gómez-Villegas
and Sánchez-Manzano et al. ( [20]) to generate PE random vectors. The GA on GA approach
developed in Bozdogan and Liu ( [23]) is used to select predictor variables and to estimate the
model parameters. Predictor variables are simulated using the following simulation protocol. The
first three predictors are simulated by

x1 = 10 + ε1
x2 = 10 + 0.3ε1 + αε2,where α =

√
1− 0.32 = 0.9539

x3 = 10 + 0.3ε1 + 0.5604αε2 + 0.8282αε3
(7.1)

where the components of ε1, ε2 and ε3 are i.i.d. according to N(0, 1). The parameter α controls
the degree of collinearity in the predictors. Then, we include some redundant variables, x4, · · · ,xi
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which are simulated by:

x4 = 4× rand(0, 1), · · · ,xi = i× rand(0, 1) (7.2)

where rand(0, 1) generates the uniform random numbers in (0, 1).
The response variables are generated from:

Yn×2 = [1, Xn×3]B4×2 + En×2 (7.3)

with X = [x1,x2,x3] and

B =




8 −5
1 0.5

0.5 0
0.3 0.3


 .

The error terms in (7.3) are now multivariate PE (MPE) distributed rather than multivariate normal
(MN).

7.1.1. Example 1: Model Parameter Estimation and Model Selection

In this example, we generate x1,x2,and x3 from (7.1) and generate Y from (7.3) with sample size
n = 500. The rows of E are i.i.d. PE2(0,Σ, β) with

Σ =
[

1 0.5
0.5 2

]

which is positive definite symmetric. We simulate two cases, β = 0.3 and β = 2 with the
two dimensional plots given in Figure 1. To these simulated data sets, we fit both multivariate
regression model under normality assumption and Type I MVPER model. In this case, we expect
that the Type I MVPER model would be chosen as our best model according to the minimum of
AIC or ICOMP, and that the model parameters would be estimated correctly, since our true model
is generated under the MPE assumption. We are especially interested in the estimates of β. The
results of 200 runs of both simulation cases are reported in Table 1.

Table 1: Results of the Simulation Example 1.

Model Avg. βmom Avg. βmle Avg. AIC Avg. ICOMP
Real β = 0.3

Normal 1 1 10487 10529
Type I MVPER 0.3312 0.3618 10154 10193

Real β = 2
Normal 1 1 3015.7 3021.3

Type I MVPER 1.9668 2.4140 2840.3 2860.0

From Table 1, we see that in all 200 runs of the simulation, the true model, i.e., the Type I
MVPER model, is chosen by both AIC and ICOMP criteria. Further, the estimates of the shape
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Figure 3: The MOM Estimates and MLEs of β in 200 Runs of Simulation Example 1.

parameter β are close to the true values. The multivariate normal regression model has never been
chosen by looking at the average values of AIC and ICOMP across the 200 runs of the simulation.
The distributions of MOM estimates and MLEs of β in the 200 runs of the simulation are shown
in Figure 3. The Q-Q plots for the Type I MVPER model in one run of the simulation example
are shown in Figure 4. From the Q-Q plots, we see that the Type I models are far from normal
models for both β = 0.3 and β = 2, which we expected. Figure 5 shows a typical GA process
used to estimated the model parameters in one run of the simulation. The GA parameters are
given in Table 2, where NG is the number of generations, PS is the population size, Pc is the
crossover probability, Pm is the mutation probability, Pe is the GA engineering probability, CT is
the crossover type, l is the length of the binary string used to encode real numbers, and NR is the
number of GA runs. CT = 3 means uniform crossover method is used.

Table 2: GA parameters of the Simulation Example 1.

GA parameters NG PS Pc Pm Pe CT l NR Elitisim
Values 50 100 0.7 0.1 0.5 3 32 200 Yes

7.1.2. Example 2: Subset selection

In this example, we show the subset selection of the best predictors under Type I MVPER model
with AIC and ICOMP(IFIM). In this simulation, three correct predictors need to be selected from
total of ten available predictor variables, where x4, · · · ,x10 are considered as redundant variables.
We generate x1, · · · ,x10 from (7.1) and (7.2), and generate Y from (7.3) with sample size n =
500. The rows of E are i.i.d. PE2(0,Σ, β) with

Σ =
[

1 0.5
0.5 2

]
,

and we set β = 2. We fit a Type I MVPER model of Y on [1, Xn×10]. We expect the algo-
rithm to pick the subset {x0, x1, x2, x3} to be the best subset selected using the minimum AIC or
ICOMP(IFIM) criteria, where x0 denotes the constant term. Parameters of GA are given in Table
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Figure 4: The Q-Q plots for Type I MVPER Models in One Run of the Simulation Example 1.
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Figure 5: A Typical GA Process in One Run of the Simulation Example 1.

3. Method of moments (MOM) estimates are used as the starting values for the GA process. For
11 independent variables (including the constant term), there are 211 = 2048 possible subsets.
Each subset, or model, is encoded as a binary string with the fixed length as the total number of
available independent or predictor variables. Each locus in the string is a binary code indicating
the presence (1) or absence (0) of a given predictor variable in the model. For example, the string
101011 represents a model, where constant term is included in the model, variable x1 is excluded
from the model, variable x2 is included in the model, and so on. Figure 6 shows the plots of all
subsets evaluated in the GA process. Both GA processes converge to the true model. The top 5
subsets selected by the minimum ICOMP(IFIM) and AIC are summarized in Table 4. From Table
4, we see that the true model is selected as the best subset according to minimum ICOMP(IFIM)
and AIC. The MLEs of the best model parameters chosen by ICOMP are:

β̂MLE = 1.7488,
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Figure 6: The GA Process for the Simulation Example 2 for ICOMP and AIC.

Σ̂MLE =
[

0.8788 0.4007
0.4007 1.7192

]

and

B̂MLE =




7.2275 −5.4046
1.0004 0.5128
0.5142 0.0951
0.3587 0.2335


 .

Our results show that the GA on GA approach with ICOMP(IFIM) or AIC as the fitness func-
tion can detect the true relationship and pick the correct models. We notice that the coefficients of
the redundant variables in the top 5 best subset models selected are small, which means that these
redundant variables can be ignored.

Table 3: GA parameters of the Simulation Example 2 and the Real Data Example.

NG PS Pc Pm Pe CT l Elitism
Subset GA 30 30 0.7 0.01 0.5 3 Yes

Model estimation GA 50 100 0.7 0.01 0.5 3 32 Yes

7.2. A Real Example: A Macroeconomic Time Series Data

In this last example, we use the famous quarterly macroeconomic time series data for the
United Kingdom during 1948-1956. This data set consists of n = 36 quarterly observations,
starting with the first quarter of 1948 and ending with the last quarter of 1956. All the n = 36
observations are used in our analysis. The descriptions of 5 response variables and 5 independent
variables from Klein et al. (1961) are given in Table 5. Now for this data set, we fit both Type
I and Type II MVPER models to determine the best fitting model. For Type II MVPER model ,
we assume Φ = In with sample size n = 36. Method of moments (MOM) estimates are used
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Table 4: Top 5 subsets according to minimum AIC and ICOMP(IFIM).

Ranking 1 2 3 4 5
Subsets selected by ICOMP(IFIM)

Subset 11110000000 11110100000 11111000000 11110000100 11110001000

β̂MLE 1.7488 1.7472 1.7464 1.7456 1.7408
ICOMP 2182.4 2187.7 2188.4 2188.8 2190.1

Subsets selected by AIC
Subset 11110000000 11110000100 11110000010 11110000110 11111000000

β̂MLE 1.9263 1.8944 1.9408 1.9055 1.9082
AIC 2118.5 2119.2 2120.0 2120.8 2121.1

as the starting values for the GA process. AIC and ICOMP(IFIM) criteria developed in Section
5 are used for subset selection of the best predictors. The top 5 best subsets selected according
to AIC and ICOMP(IFIM) scores by fitting Type I and Type II MVPER models on the Klein data
set. The results are summarized in Tables 6 and 7, respectively. We can see that the results of AIC
and ICOMP(IFIM) are slightly different for each type of MVPER models for this data set. For
Type I MVPER model, both AIC and ICOMP(IFIM) criteria select the binary string 000001 as
the optimal model. In other words, the predictor variable x5 = price index of consumption is
the best predictor to predict all the response variable Y with β̂MLE = 1.3099 which indicates that
this data set is not normal.

The MLEs of B and Σ for the optimal model are:

B̂MLE,Model I =
(

1.0084 0.9151 0.8590 0.9793 1.0597
)

and

Σ̂MLE,Model I =




84.9514 9.1643 6.1158 9.5936 15.5155
9.1643 91.5875 138.4841 3.8669 −18.4478
6.1158 138.4841 576.3684 −55.7333 −54.1991
9.5936 3.8669 −55.7333 34.2577 −4.7476
15.5155 −18.4478 −54.1991 −4.7476 81.4006



.

For Type II MVPER model, both AIC and ICOMP(IFIM) select 110000 as the optimal model.
That is, the constant term x0 and the predictor variable x1 = total labor force are chosen as the
best subset of predictors.

The MLEs of B and Σ for the optimal model are

B̂MLE,Model II =
( −462.5338 −115.9112 473.4929 −417.9496 −505.6549

5.6339 2.1539 −3.6246 5.1773 6.0989

)

and

Σ̂MLE,Model II =




496.1 171.4 −729.1 263.0 256.7
171.4 176.3 −188.7 25.6 26.7
−729.1 −188.7 9812.5 −1485.6 −765.4
263.0 25.6 −1485.6 973.4 275.0
256.7 26.7 −765.4 275.0 1479.4



.
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Table 5: Variables of the Klein data set.

response variables independent variables
y1 = industrial production x1 = total labor force
y2 = consumption x2 = weekly wage rates
y3 = unemployment x3 = price index of imports
y4 = total imports x4 = price index of exports
y5 = total exports x5 = price index of consumption

Table 6: Top 5 ranking subsets selected under Type I MVPER Model.

Ranking 1 2 3 4 5
Subsets selected by AIC

Subset 000001 101000 010000 000100 000010
β̂MOM 1.0641 0.7963 0.7980 1.0177 1.0925
β̂MLE 1.3099 0.5446 0.5574 1.0446 0.7016
AIC 1379.2 1483.1 1498.3 1521.5 1527.6

Subsets selected by ICOMP(IFIM)
Subset 000001 101000 000100 000010 010000
β̂MOM 1.0641 0.7963 1.0177 1.0925 0.7980
β̂MLE 1.3099 0.5446 1.0446 0.7016 0.5574

ICOMP 1495.0 1540.6 1616.0 1637.0 1655.5

From the results in Tables 6 and 7, we see that the AIC and ICOMP(IFIM) values for the
best Type II model are much smaller than those for the best Type I model. So according to the
minimum value of both AIC and ICOMP(IFIM) criteria, Type II MVPER model will be selected
as the best fitting model for the Klein data set. We note that such a choice is in agreement with
our prior knowledge about this data set in that the observations actually are not independent. They
are dependent since this data set is time dependent. We can also see that for both Type I and
Type II MVPER models, the MLEs of β are different from one another, which means that the
residuals are non-normal for the Klein data set. Here we use Q-Q plots to test the normality of
the residuals. For the Type I model, if the residuals are i.i.d. multivariate normally distributed,
the squared Mahalanobis distance of each residual vector, di = ε′−1

(i) S
−1ε(i), will be distributed

approximately as χ2 with p degrees of freedom, where p = 5 is the number of dependent variables
in the model. So the Q-Q plot for Type I model is the ordered distance values di against the
corresponding theoretical quantiles of χ2(5) distribution. For the Type II model, we first vectorize
the residuals and then do the plot as the classic normal Q-Q plot. The Q-Q plots are shown in
Figures 7 and 8, respectively. From the graphs, we see that the Type I model is closer to the
normal model according to the estimated β values. However, we see that the best fitting Type II
model does not follow the normal distribution based on the estimated β values. Indeed, this data
set has serial correlations which causes the fact that the probability distribution of the model is
misspecified. Type II model captures such misspecification as a general and flexible model which

†The GA is setup to search β in [0.001 10]. If the MLE of β is very near to 10, we consider the estimate is ∞. If the
MOM of β is very near to 10, it means the MOM of β does not exist.
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Table 7: Top 5 ranking subsets selected under Type II MVPER Model.

Ranking 1 2 3 4 5
Subsets selected by AIC

Subset 110000 110100 110001 110010 111001
β̂MOM 0.0041 0.0083 0.0077 10.0000† 9.9994
β̂MLE 2.5533 2.5115 2.2101 2.2664 2.1740
AIC 632.8 638.9 658.7 661.4 666.3

Subsets selected by ICOMP(IFIM)
Subset 110000 100000 110100 110010 110001
β̂MOM 0.0041 4.1282 0.0083 10.0000 0.0077
β̂MLE 2.5533 2.2379 2.5115 2.2664 2.2101

ICOMP 939.3 1018.0 1034.1 1043.8 1044.8

takes the dependency structure of the data into account.
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Figure 7: Q-Q plot under the Type I model.

8. Conclusion

In this paper we presented a new and novel model selection technique to deal with non-
normality in multivariate regression models using information-theoretic model selection criteria
such as AIC and ICOMP. We developed two types of MVPER models. These two types of MVPER
models discussed in this paper can be used to model random phenomena whose observations are
dependent or independent when the tails are thicker or thinner than those of multivariate normal
distribution which is used often in the literature. As a subfamily of matrix EC distribution, Type
II model has been studied partly in the context of multivariate EC regression model such as the
work of Fang and Anderson ( [17, p.214]) and Bozdogan ( [11]), etc. But the Type I model is
seldom discussed in literature. One special difficulty of MVPER models is to estimate the shape
parameter β. In this paper, we provided methods to obtain MOM estimates and MLEs for both
types of models. From the above results, we see that the MLEs of the Type II model actually can
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Figure 8: Q-Q plot under the Type II model.

not be obtained from a single sample. But a two step re-sampling method is used and developed
to solve this problem. Our simulated as well as the real computational examples show that the hy-
brid of information criteria such as AIC and ICOMP(IFIM) and the GA approach works well for
model selection in both cases. Advantages of this approach introduced in this paper are flexible to
resolve many problems in vector autoregressive (VAR) models, in kernel support vector machines
(SVMs), etc. by taking the dependency in the data into account.

All our computations are carried out using a newly developed computational MATLAB mod-
ules with GA.
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The Pseudo Code of Genetic Algorithm

Algorithm 1: The pseudo code of GA for regression model selec-
tion

PS=Population size;
NG=Number of generations of GA;
Pc=Crossover probability;
Pm=Mutation probability;
Pe=GA engineering probability;
CT=Crossover type;
i = 1;
Generate PS original solutions randomly;
Encode the solutions to binary strings (chromosomes);
For i ≤ NG

Evaluate the fitness of each solution of generation i;
Find the best solution in generation i;
If elitism is true Then

Select NG/2− 1 pairs of parent chromosomes from generation i;
Else

Select NG/2 pairs of parent chromosomes from generation i;
End
Cross over each pair of parent chromosomes with probability Pc;
If CT = 1 Then

Do single point crossover;
Else If CT = 2 Then

Do two point crossover;
Else

Do uniform crossover;
End
Mutate new offspring at each lotus with probability Pm;
Engineer the new offspring with probability Pe;
If elitism is true Then

Add the best chromosome in generation i to new offspring;
Add a randomly selected chromosome in generation i to new offspring;

End
i = i+ 1;
Decode the new offspring to solutions;
Replace the chromosomes in generation i with new offspring;
Replace the solutions in generation i with new solutions;
If any special final condition is satisfied Then

Exit;
End
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End

Generating Univariate PE Pseudo-Random Numbers

Let Y = 1
2 |X|2β , where X has a standard PE distribution with shape parameter β. Then

P (Y < y) = P (|X|2β < 2y)
= P (−(2y)1/2β < X < (2y)1/2β)

=
∫ (2y)1/2β

−(2y)1/2β
1

Γ
“
1+ 1

2β

”
2
1+ 1

2β
exp

(
−1

2 |x|2β
)
dx

=
∫ (2y)1/2β

0
1

Γ
“
1+ 1

2β

”
2

1
2β

exp
(−1

2x
2β

)
dx

=
∫ y
0

t1/2β−1

Γ
“

1
2β

” exp (−t) dt.

(8.1)

So Y has a distribution with density

f(y) =
y(1/2β)−1e−y

Γ(1/2β)
, (8.2)

i.e., Y ∼ Gamma(1/2β). One method generating pseudo-random PE variables is given as fol-
lows:

1. Generate ordinates from a Gamma distribution with density (8.2);

2. Generate B from a Bernoulli distribution with p = 1/2 ;

3. If B = 0, then generate X = (2Y )1/2β , otherwise, generate X = −(2Y )1/2β;

4. Generate Z = σX + µ.

Histograms of random samples of size 1000 generated from above algorithm are given in
Figure 9.

Matrix Calculus for Type I MVPER Model

∂ε(i)

∂B = ∂(y(i)−B′x(i))

∂B

= ∂y(i)

∂B − ∂B′x(i)

∂B

= −∂B′x(i)

∂B
= −I(q,p)(x(i) ⊗ Ip)

(8.3)

where I(q,p) is the permuted identity Macrae ( [24]) or commutation matrix Magnus and Neudecker
( [25]).
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Figure 9: Histograms of PE pseudo-random samples.

∂ε(i)

∂B′ = ∂(y(i)−B′x(i))

∂B′

= ∂y(i)

∂B′ −
∂B′x(i)

∂B′

= −∂B′x(i)

∂B′
= −V ec(Ip)V ec′(x(i))

(8.4)

∂ti
∂B =

∂ε′−1
(i)

ε(i)

∂B

=
∂ε′−1

(i)
ε(i)

∂ε(i)
∗ ∂ε(i)

∂B

= 2Σ−1ε(i) ∗ (−I(q,p)(x(i) ⊗ Ip))
= −2Σ−1ε(i) ∗ (IqpI(q,p)(x(i) ⊗ Ip))
= −2Σ−1ε(i) ∗ ((Ip ⊗ Iq)I(q,p)(x(i) ⊗ Ip))
= −2x(i)(Σ−1si)′Ip
= −2x(i)ε

′−1
(i)

(8.5)

where ∗ is the star product ( [24]).

∂ti
∂B′ =

∂ε′−1
(i)

ε(i)

∂B′

=
∂ε′−1

(i)
ε(i)

∂ε(i)
∗ ∂ε(i)

∂B′

= 2Σ−1ε(i) ∗ (−V ec(Ip)V ec′(x(i)))
= −2Σ−1ε(i)x′(i)

(8.6)
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∂l(θ)
∂B = −1

2

n∑
i=1

∂tβi
∂B

= −1
2

n∑
i=1

∂tβi
∂ti

∂ti
∂B

= β
n∑

i=1
tβ−1
i x(i)ε

′−1
(i)

= β
n∑

i=1
(((y(i)−B′x(i))′−1(y(i)−B′x(i)))β−1x(i)(y(i)−B′x(i))′−1),

(8.7)

∂l(θ)
∂b = ∂l(θ)

∂V ec(B′)

= vec∂l(θ)
∂B′

= V ec(∂l(θ)
∂B )′

= β
n∑

i=1
tβ−1
i V ec(Σ−1ε(i)x′(i))

(8.8)

∂2l(θ)
∂B′∂B = ∂

∂B′ (
∂l(θ)
∂B )

= ∂
∂B′ (β

n∑
i=1

tβ−1
i x(i)ε

′−1
(i) )

= β
n∑

i=1

∂(tβ−1
i x(i)ε

′−1
(i)

)

∂B′

= β
n∑

i=1
(tβ−1

i

∂(x(i)ε
′−1
(i)

)

∂B′ + (x(i)ε
′−1
(i) )⊗ ∂tβ−1

i
∂B′ )

= β
n∑

i=1
(tβ−1

i (x(i) ⊗ Ip)
∂ε′

(i)

∂B′ (Σ
−1 ⊗ Iq) + (x(i)ε

′−1
(i) )⊗ (∂tβ−1

i
∂ti

∂ti
∂B′ ))

= β
n∑

i=1
(−tβ−1

i (x(i) ⊗ Ip)(x′(i) ⊗ Ip)I(p,q)(Σ−1 ⊗ Iq)

−2(β − 1)tβ−2
i (x(i)ε

′−1
(i) )⊗ (Σ−1ε(i)x′(i)))

= −β
n∑

i=1
(tβ−1

i (x(i)x
′−1
(i) )

+2(β − 1)tβ−2
i (x(i)ε

′−1
(i) )⊗ (Σ−1ε(i)x′(i)))

(8.9)

∂(tβ−1
i Σ−1ε(i)x

′
(i)

)

∂B′ = tβ−1
i

∂(Σ−1ε(i)x
′
(i)

)

∂B′ + (Σ−1ε(i)x′(i))⊗
∂tβ−1

i
∂B′

= tβ−1
i (Σ−1 ⊗ Ip)

∂ε(i)

∂B′ (x
′
(i) ⊗ Iq) + (Σ−1ε(i)x′(i))⊗

∂tβ−1
i

∂B′

= −tβ−1
i (Σ−1 ⊗ Ip)V ec(Ip)V ec′(x(i))(x′(i) ⊗ Iq)

−(Σ−1ε(i)x′(i))⊗ (∂tβ−1
i
∂ti

∂ti
∂B′ )

= −tβ−1
i V ec(Σ−1)V ec′(x(i)x′(i))

−2(β − 1)tβ−2
i (Σ−1ε(i)x

′−1
(i) ε(i)x

′
(i))

(8.10)
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∂2(θ)
∂b′∂b = ∂

∂b′ (
∂l(θ)
∂b )

= β
n∑

i=1

∂V ec(tβ−1
i Σ−1ε(i)x

′
(i)

)

∂b′

= β
n∑

i=1

∂V ec(tβ−1
i Σ−1ε(i)x

′
(i)

)

∂V ec′(B′)

= β
n∑

i=1
(Ipq ⊗ V ec′(Ip))(Iq ⊗

∂(tβ−1
i Σ−1ε(i)x

′
(i)

)

∂B′ ⊗ Ip)(V ec(Iq)⊗ Ipq)

= β
n∑

i=1
(Ipq ⊗ V ec′(Ip))(Iq ⊗Mi ⊗ Ip)(V ec(Iq)⊗ Ipq)

(8.11)

where

Mi = −tβ−1
i V ec(Σ−1)V ec′(x(i)x

′
(i))− 2(β − 1)tβ−2

i (Σ−1ε(i)x
′−1
(i) ε(i)x

′
(i)).

∂ti
∂Σ =

∂(ε′−1
(i)

ε(i))

∂Σ

= −Σ−1ε(i)ε
′−1
(i)

(8.12)

∂l(θ)
∂Σ = −n

2
∂ log |Σ|

∂Σ − 1
2

n∑
i=1

∂tβi
∂Σ

= −n
2 Σ−1 − 1

2

n∑
i=1

∂tβ−1
i
∂ti

∂ti
∂Σ

= −n
2 Σ−1 − 1

2

n∑
i=1

βtβ−1
i

∂ti
∂Σ

= −n
2 Σ−1 + β

2

n∑
i=1

tβ−1
i Σ−1ε(i)ε

′−1
(i) .

(8.13)

∂(Σ−1ε(i)ε
′−1
(i)

)

∂Σ = ∂Σ−1

∂Σ (ε(i)ε
′−1
(i) ⊗ Ip) + (Σ−1 ⊗ Ip)(ε(i)ε′(i) ⊗ Ip)∂Σ−1

∂Σ

= −V ec(Σ−1)V ec′−1)(ε(i)ε
′−1
(i) ⊗ Ip)

−(Σ−1ε(i)ε
′
(i) ⊗ Ip)V ec(Σ−1)V ec′−1)

= −V ec(Σ−1)V ec′−1ε(i)ε
′−1
(i) )

−V ec(Σ−1ε(i)ε
′−1
(i) )V ec′−1)

(8.14)

∂2l(θ)
∂Σ′∂Σ = ∂

∂Σ′ (
∂l(θ)
∂Σ )

= −n
2

∂Σ−1

∂Σ + β
2

n∑
i=1

∂(tβ−1
i Σ−1ε(i)ε

′−1
(i)

)

∂Σ

= n
2V ec(Σ

−1)V ec′−1)

+β
2

n∑
i=1

(tβ−1
i

∂(Σ−1ε(i)ε
′−1
(i)

)

∂Σ + (Σ−1ε(i)ε
′−1
(i) )⊗ ∂tβ−1

i
∂Σ )

= n
2V ec(Σ

−1)V ec′−1)

−β
2

n∑
i=1

tβ−1
i (V ec(Σ−1)V ec′−1ε(i)ε

′−1
(i) )

+V ec(Σ−1ε(i)ε
′−1
(i) )V ec′−1))

−β(β−1)
2

n∑
i=1

(tβ−2
i (Σ−1ε(i)ε

′−1
(i) )⊗ (Σ−1ε(i)ε

′−1
(i) ))

(8.15)
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∂l(θ)
∂V ec(Σ) = vec(∂l(θ)

∂Σ )

= −n
2V ec(Σ

−1) + β
2

n∑
i=1

tβ−1
i V ec(Σ−1ε(i)ε

′−1
(i) ).

(8.16)

∂2l(θ)
∂V ec′(Σ)∂V ec(Σ) = (Ip2 ⊗ V ec′(Ip))(Ip ⊗ ∂2l(θ)

∂Σ′∂Σ ⊗ Ip)(V ec(Ip)⊗ Ip2)) (8.17)

∂l(θ)
∂β

=
np

2β2
ψ(1 +

p

2β
) +

np

2β2
log 2− 1

2

n∑

i=1

tβi log ti (8.18)

where ψ(·) = d log Γ(x)/dx is called digamma function Abramowitz and Stegun ( [1]), or psi
function.

∂2l(θ)
∂β2 = −np

β3ψ(1 + p
2β )− np2

4β4ψ
′(1 + p

2β )− np
β3 log 2− 1

2

n∑
i=1

tβi log2 ti (8.19)

where ψ′(·) = d2 log Γ(x)/dx2 is called trigamma function.

∂2l(θ)
∂β∂b = ∂

∂β (∂l(θ)
∂b )

=
n∑

i=1
tβ−1
i V ec(Σ−1ε(i)x′(i)) + β

n∑
i=1

tβ−1
i log(ti)V ec(Σ−1ε(i)x′(i))

(8.20)

∂2l(θ)
∂β∂V ec(Σ) = ∂

∂β ( ∂l(θ)
∂V ec(Σ))

= 1
2

n∑
i=1

tβ−1
i V ec(Σ−1ε(i)ε

′−1
(i) )

+β
2

n∑
i=1

tβ−1
i log(ti)V ec(Σ−1ε(i)ε

′−1
(i) ).

(8.21)

∂2l(θ)
∂V ec′(Σ)∂b = ∂

∂∂V ec′(Σ)(
∂l(θ)
∂b )

= β
n∑

i=1

∂V ec(tβ−1
i Σ−1ε(i)x

′
(i)

)

∂V ec′(Σ)

= β
n∑

i=1
(Ipq ⊗ V ec′(Ip))(Iq ⊗Ni ⊗ Ip)(V ec(Iq)⊗ Ip2)

(8.22)

where

Ni =
∂(tβ−1

i Σ−1ε(i)x
′
(i)

)

∂Σ

= tβ−1
i

∂Σ−1

∂Σ (ε(i)x′(i) ⊗ Ip) + (Σ−1ε(i)x′(i))⊗
∂tβ−1

i
∂Σ

= −tβ−1
i V ec(Σ−1)V ec′−1)(ε(i)x′(i) ⊗ Ip)

−(β − 1)tβ−2
i (Σ−1ε(i)x

′−1
(i) ε(i)ε

′−1
(i) )

= −tβ−1
i V ec(Σ−1)V ec′−1ε(i)x′(i))

−(β − 1)tβ−2
i (Σ−1ε(i)x

′−1
(i) ε(i)ε

′−1
(i) )
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∂E

∂B
= −∂(XB)

∂B
= −V ec(X ′)V ec′(Ip).

∂E′

∂B
= −∂(B′X ′)

∂B
= −I(q,p)(X

′ ⊗ Ip).

(Σ−1 ⊗ Iq)(E′−1 ⊗ Iq)∂E
∂B = −(Σ−1E′−1 ⊗ Iq)V ec(X ′)V ec′(Ip)

= −V ec(X ′−1EΣ−1)V ec′(Ip).

(Σ−1 ⊗ Iq)
∂E′

∂B
(E ⊗ Ip) = −(Σ−1 ⊗ Iq)I(q,p)(X

′−1E ⊗ Ip)

∂l(θ)
∂B = −β

2 (tr(Σ−1E′−1E))β−1(Ip ∗ ∂(Σ−1E′−1E)
∂B )

= −β
2 (tr(Σ−1E′−1E))β−1(Ip ∗ (Σ−1 ⊗ Iq)

∂(E′−1E)
∂B )

= −β
2 (tr(Σ−1E′−1E))β−1(Ip ∗ (Σ−1 ⊗ Iq)

(∂E′
∂B (Φ−1E ⊗ Ip) + (E′−1 ⊗ Iq)∂E

∂B ))
= β(tr(Σ−1E′β−1X ′−1EΣ−1

(8.23)

where ∗ is the star product Macrae ( [24]) and I(q,p) is the permuted identity Macrae ( [24]) or
commutation matrix Magnus and Neudecker ( [25]).

∂l(θ)
∂Σ = −n

2 Σ−1 − β
2 (tr(Σ−1E′−1E))β−1(Ip ∗ ∂(Σ−1E′−1E)

∂Σ )
= −n

2 Σ−1 − β
2 (tr(Σ−1E′−1E))β−1(Ip ∗ ∂Σ−1

∂Σ (E′−1E ⊗ Ip))
= −n

2 Σ−1

+β
2 (tr(Σ−1E′−1E))β−1(Ip ∗ V ec(Σ−1)V ec′−1)(E′−1E ⊗ Ip))

= −n
2 Σ−1 + β

2 (tr(Σ−1E′−1E))β−1(Ip ∗ V ec(Σ−1)V ec′−1E′−1E))
= −n

2 Σ−1 + β
2 (tr(Σ−1E′−1E))β−1Σ−1E′−1EΣ−1.

(8.24)

∂l2(θ)
∂B′∂B′ = ∂(β(tr(Σ−1E′−1E))β−1Σ−1E′−1X)

∂B′

= β(tr(Σ−1E′−1E))β−1 ∂(Σ−1E′−1X)
∂B′

+(Σ−1E′−1X)⊗ ∂(β(tr(Σ−1E′−1E))β−1)
∂B′ ,

(8.25)

∂(Σ−1E′−1X)
∂B′ = (Σ−1 ⊗ Ip)(∂E

∂B )′−1X ⊗ Iq)
= −(Σ−1 ⊗ Ip)V ec(Ip)V ec′(X ′−1X ⊗ Iq)
= −V ec(Σ−1)V ec′(X ′−1X).

(8.26)
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