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1. Introduction

Let .« denote the class of functions of the form
o0

f(2) =z+2akzk (1)
k=2

which are analytic in the open unit disk U= {z € C : |z| < 1}. Let #*(a) and ¢ (a) denote
the subclasses of ./ consisting of starlike and convex functions of order a (0 < a < 1) and
let #*(0) = &* and ¢ (0) = . If f and g are analytic in U, we say that f is subordinate
to g in U, written as f < g or f(z) < g(2), if there exists a Schwarz function w such that
f(2)=gw(z)) forz e U.
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A function f € .« is said to be prestarlike of order a in U if

ﬁ xf(z) e (a)(0<a<1),
where the symbol (*) means the familiar Hadamard product (or convolution) of two analytic
functions in U. We denote this class by Z(a) (see, for details, [9]). We note that a function
f € .o is in the class Z(0) if and only if f is convex univalent in U, and %Z(1/2) = &*(1/2).
Let A be the class of all analytic functions h which are univalent in U and for which h(U)
is convex with h(0) = 1 and and Re{h(z)} > 0in U.
For any real number s, we define the multiplier transformations I of functions f € .«/ by

N (k+ A
Ef(z)=z+ (—) azk (A >-1).
A ; 1+2) *

Obviously, we observe that
B f () =1"f(2)
for all real numbers s and t. For A = 1 and any integer s, the operator I; was studied by
Uralegaddi and Somanatha [13]. Also, for s = —1, the operator I is the integral operator
studied by Owa and Srivastava [8]. Moreover, the operator I3 is closely related to the mul-
tiplier transformation studied by Jung et al. [3] (also see [2]), and the differential operator
defined by Sdldgean [10].
Let

o (k+2A)°
fi(z)=z+2(—) zk (seR; A>-1)
—\1+4
and let f; u be defined such that

z
(1—zp

£@)*f3 @) = (u>0;z€U), @

where the symbol (x) stands for the Hadamard product(or convolution). Then, motivated
essentially by the Choi-Saigo-Srivastava operator [1] (see also [5], [6] and [7]), we now
introduce the operator I3 e .o/ — o/ , which are defined here by

5@ =(F,f)@ (fed;ser 2>-1;u>0), 3)

In particular, we note that Ig’zf (z) = 2zf'(2) and I&Zf(z) = f(z). In view of (2) and (3), we
obtain the following relations:

2 (1,f@) =L, f@ - -1, @) (fed; 2>-1u>0) @

and

2 (I;:}f(z))/ =+ DI f(2) ~ AT f(2) (f € 3 A> =15 u>0). (5)
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We also define the function ¢(a,c;2) by

$(a,c;2) = Z Ea;: k1 ©

(zeU,aeR,ceR\Zo;Za ={-1,-2,---}),

where (v); is the Pochhammer symbol (or the shifted factorial) defined (in terms of the
Gamma function) by

r(v+k) 1 ifk=0andv €C\ {0},
(V)k5=—={

r'(v) viv+1)---(v+k—-1) ifkeN:={1,2,---}andv €C.

By using the operator I o e introduce the following class of analytic functions for y > 0,
A>-1,seR,u>0andhe A4

S

fz
T3, (r;h) == {f ed:(1-7)L

)
+7(15, f ()Y < h(z)} .

In the present paper, we derive some inclusion relations, convolution properties and inte-
gral preserving properties for the class T;’“(y; h).
The following lemmas will be required in our investigation.

Lemma 1. [4] Let g be analytic in U and h be analytic and convex univalent in U with h(0) =
8(0). If .
g(z)+ ;zg’(Z) < h(z) (Re{r} = 0;y #0), (7)

then N
g(z) <h(z) = yz—Yf " h(t)dt < h(z)
0

and h is the best dominant of (7).
Lemma 2. [9]Let f € *(a) and g € Z(a). Then for any analytic function F in U,

gx(fF)
gxf

where co(F(U)) denotes the convex hull of F(U).

(U) ceco(F(D))

Lemma 3. [12]Let 0 <a <c. Then
a,c;z 1
Re{u} >—(ze€l),
Z 2

where ¢ is given by (1.6).
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2. Inclusion Relations
Theorem 1. If0 < y; <Y,, then
T3 (1231 € T3, (rish).

Proof. Let

S

5

glz)= (f T} ,(y2;h):2€). 8)

Z
Then the function g is analytic in U with g(0) = 1. Differentiating both sides of (8), we have

15, (2)

Z

(1-712) +1a(l5,f (2)) = g(2) +7228"(2) < h(z). 9)

Hence an application of Lemma 1 with yu = 1/y, yields
g(2) < h(z). (10

Since 0 < y1/y, < 1 and h is convex univalent in U, it follows from (8), (9) and (10) that

) ,
(1-71) . + 711015 ,.f (2))
1)
e P ekt m(%f(z))’} +(1-2) s
2 Y2
=< h(2).

Therefore f € Tj H(yl; h) and so we complete the proof of Theorem 1.

Theorem 2. If 0 < u; < o, then
T3, (s T3, (v;h).
Proof. Let f € T Hz(Y; h). Then

RS :
N (L IWIO) (1)

o L f(z)
_ Pl paia) {(1 — N (15, R |
2 p4

In view of Lemma 3, we see that the function ¢ (u;, uy;2)/z has the Herglotz representation

¢ (U, tg;2) :f du(x)
|x|=1

(z€), (12)
4 1—xz
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where u(x) is a probability measure defined on the unit circle |x| < 1 and

J du(x)=1.
|x]=1

Since h is convex univalent in U, it follows from (11) and (12) that
S

Il,.ulf(z) /
=201, f = | hGut) <)

|x|=1

which completes the proof of Theorem 9.

Theorem 3. If u > 0, then N
T; (s < 13, (rs h),

where s

h(z) = uz_“f t“Th(t)dt < h(z).
0

Proof. Let
IS
Au
2

gz)=(0-y)
Then from (4) and (13), we have
28(z) =yul; 1 f () + A —ywl; ,f(2).

Differentiating both sides of (13) and using (4) again, we obtain

2(28'(z) + g(2))

2)
+y(I3,f () (f € ;2 €U),

= ypa(Ty,, fG) + (=)Wl f () — (u— DI f ().

By a simple calculation with (14) and (15), we get

@) _ B

g(z)+ 1-7) +r(05 0 f @)
If f e Tjw +1()f; h), then it follows from (16) that

28’ (2)

glz)+ < h(z) (u>0).

Hence an application of Lemma 1 yields

4

g(z) <h(z) = uz_“f t“Ih(6)dt < h(z),
0

which shows that _
fer; nrhcT; (r;h).

1128

(13)

(14)

(15)

(16)
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Theorem 4. If s € R and A > —1, then
75 ,(r;h) € T34 (y; ),

where
z

h(z) =1+ 1)2_(“1)[ t*h(t)dt < h(z).
0

Proof. By using the same techniques as in the proof of Theorem 3 and (5), we have
Theorem 11 and so we omit the detailed proof involved.

Theorem 5. Let y >0, 8 >0and f € Tiu(y;/a’h-l— 1—p0). If B < By, where

-1

1 11
1 1 ur
ﬁO =3 1-—- du > (17)
2 0

then f € T; M(O; h). The bound f, is sharp for the function

h(z) = (z € V).

1-2
Proof. Let

S

Ix,u Z)
(feT; (r;Bh+1-F)y>0;5>0). (18)

g(z) =

Then we have

S

Z
8@ +72g/(2) = (1 =2 115, f )Y

< Bh(z)+1-B.

Hence an application of Lemma 1 yields

g(z)<€z‘$f e h(Ode +1— B = (h*)(z), (19)
0
where )
Y(z)=—g 7 —dt+1-6. (20)
Y o 1—t

If 0 < B < By, where f3 is given by (17), then from (20), we have
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1

R _ﬁf i { 1 }
efY(z)}=—| ur Re dut+1-p
Y Jo 1—uz

1 1
L
T Jo 1
1
> —.
—2

By using the Herglotz representation for 1), it follows from (18) and (19) that

IS
wf @) (R )(z) < h(z),

Z

since h is convex univalent in U. This shows that f € T} M(O; h).
For h(z) =1/(1 — %) and f € ./ defined by

5SG) B f (i
0

—z 7 dt+1-p,

z Y
it is easy to verify that
L f (=)

M (15, () = Bh(z) +1- .

1-7)

Thus f € T H(y; Bh+1— ). Furthermore, for f > f,, we have

I !
e { A,Hf(z)} B f
Z Y Jo

which implies that f & T; H(O; h). Hence the bound f; cannot be increased when
h(z)=1/(1—-2) (z €U).

U%_ld 1 LY
u+l-p<=-(E—--1)
1+u p 2

3. Convolution Properties

Theorem 6. If f € T; M(y; h) and

Re{@} > 1 (ge o;2e€0),
4 2

then
fxgeT; (v;h).

1130



O. Kwon, N. Cho / Eur. J. Pure Appl. Math, 3 (2010), 1124-1136 1131

Proof. Let f € T, M(y; h) and g € .«/. Then we have

5, *)(@)
a2 6 o) = E2 ey,

where
L f(z)

Y(z) =(1— 1)+ (15, f (2)) < h(z).

The remaining part of the proof of Theorem 6 is similar to that of Theorem 2 and so we omit
the details involved.

Corollary 1. Let f € Tjw(y; h) be given by (1). Then the function

O'm(z)=f Sm{t2 )dt( el),
0

where
m—1

Sn(z) =2+ Z a2t meN\{1};z €U),

is also in the class T;W(y; h).
Proof. We have

Om(z) =2+ Z Bt L = (f % g)(2) (m €N\ {13), 1)
where -
f@) =24 02" € T] (v;h)
n=1
and

gm(z) =

while, it is known [11] that

{gm( )} {1+Z +1}>%(meN\{1};z€U). (22)

In view of (21) and (22), an application of Theorem 6 leads to o, € T; M(y; h).

Theorem 7. If f € Tiu(y;h) and
§(z) €R(a) (g € #;z€U),

then
frgeT; (v;h).
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Proof. By using a similar method as in the proof of Theorem 21, we have

1,0 86
a-n2= 2, g6y - £ T D e, @)
where
1;,fG) ,
P& == 4y, S @) < he)

Since h is convex univalent in U, it follows from (23) and Lemma 2 that Theorem 7 holds
true.

If we take @ = 0 and a = 1/2 in Theorem 7, we have the following corollary.
Corollary 2. If f € T} M(y; h) and g € .o/ satisfies one of the following conditions:

() g(2) is convex univalent in U

or
(i) g(z) €S*(3),
then f x g € Tiu(y; h).
4. Integral Operators

Theorem 8. If f € T} H(y; h), then the function F defined by

F(z) = C:—clf t L (6)dt (Refc} > —1) (24)
0

is in the class Ti’“(y;z), where

Z

h(z)=(c+ 1)2_(C+1)J t°h(t)dt < h(z).
0

Proof. Let f € Tiu(y; h). Then from (24), we obtain
(c +1)f(2) =2F'(2) + cF(2). (25)
Define the function G by
2G(z)=(1- y)Ii,MF(z) + yz(Ii’HF(z))’ (z €). (26)
Differentiating both sides of (26) with respect to z, we get

) I;’“(zF’(z)) ) )
G(z)+2G'(z)=(1—- Y)T +71(1; ,(=F(2))). 27)
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Furthermore, it follows from (25), (26) and (27) that
L f(z)

(1 —_ Y) A:HZ + Y(I;’“f(z))/
= G()+ - i 2G/(2). -

Since f € T; H(y; h), from (28), we have

G(z)+ 2G'(2) < h(2) (Re{c} > —1),

c+1

and so an application of Lemma 1 yields

c+1

G(z) < h(z) = T f t°h(t)dt < h(z).
0

Therefore we conclude that _
FeT, (r;h) T, (v;h).
Theorem 9. If f € .o/ and F be defined as in Theorem 8. If

I F I
(1-a) MLZ ) +a A’{(Z)

< h(z) (a>0), (29)

then F € T; “(O;Tl), where

Zz

~ c+1 __a ol _q
h(z) = " g o t« “h(t) < h(z) (Re{c} > —1).

0

Proof. Let
5 MF(z)
G(z)=—= . (z €). (30)

Then G is analytic in U with G(0) =1 and

2G'(2) = (Ii’uF(z))’ — G(2). (31)
It follows from (25), (29), (30), and (31) that
Ii,uF(z) N ali’uf(z)

b4
Ii)uF(z) a CI;,HF(Z)

+
Z c+1

(1-a)

=(1—-a)

+ (13 F(=)
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a

=G
(z)+c+1

2G'(2z) < h(z) (Re{c} > 1;a > 0).

Therefore, by Lemma 1, we conclude that Theorem 9 holds true as stated.

Theorem 10. Let F € T, M(y; h). If the function f is defined by

F@):iglf t I (0)dt (¢ > —1),
0

then (02)
oz
——eTy,(rh),

V1+(c+1)2-1

c+1

where

oc=o0(c)=

The bound o is sharp for the function

142
hz)=F+1~F)— (B# Lz <),

Proof. We note that for F € ./,

F(z)=F(2)* and zF'(z) = F(2) *

Z Z
1-z (1-2)*
Then from (32), we have

CF(2) +2F'(z)

f@)=——"7—— =F*g)z) (c>-1z€D),

where

_ 1 b4 b4 o
8(z) =" (61—z+(1_z)2)€ :

Re{@} > 1 (lz] < o),
b4 2

where o = o(c) is given by (4.10). Letting

Next, we show that

1 ,
—— =Re? (]z] =r <1;R>0),
1—2

we see that ) )
1+R“(1—r

c059:¥andRZ .

2R 1+4+r

1134

(32)

(33)

(34)

(35)

(36)

(37)

(38)
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Then for (36) and (38), we have

g(z)) 2 ) )
2Re{ . }—C+1[CRCOSG+R (2cos“ 0 1)}

2

= c(1-r)+R*(1-r?)2-2]+1
— [ =) +R* - - 2]
RZ

2
zc+1[c+1—2r—(c+1)r]+1.

This evidently gives (37), which is equivalent to

Re { g(az)} > % zel). (39)

z0

LetF €T, H(y; h). Then, by using (35) and (39), an application of Theorem 6 yields

F0o2) _ piay« 897 T3, (v h).
g (02 >

For h given by (34), we consider the function F € .«/ defined by

IS

A, s / 1+z
(1= )2 (15 FG)Y = B+ (1= B (B # iz € V). (40)
Then from (26), (28) and (40) , we find that
B
(1= NP 41003, f (=)

—pra-pE 2 (/5+(1—/5)1+2)
-2 C 1—2
(1-B)c+1+2z—(c+1)z?)
(c+1)(1—2)

=B (z=—0).
Therefore we conclude that the bound o = o(¢) cannot be increased for each ¢ (¢ > —1).
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