Divergence Measures Estimation and its Asymptotic Normality Theory in the Discrete Case

Amadou Diadie Ba, Gane Samb Lo

Abstract

In this paper we provide the asymptotic theory of the general of φ-divergences measures, which include the most common divergence measures : R´enyi and Tsallis families and the Kullback-Leibler measure. We are interested in divergence measures in the discrete case. One sided and two-sided statistical tests are derived as well as symmetrized estimators. Almost sure rates of convergence and asymptotic normality theorem are obtained in the general case, and next particularized for the R´enyi and Tsallis families and for the Kullback-Leibler measure as well. Our theoretical results are validated by simulations.

Keywords

Phi-divergence measure estimation

Full Text:

PDF