On 2-Resolving Dominating Sets in the Join, Corona and Lexicographic Product of Two Graphs
DOI:
https://doi.org/10.29020/nybg.ejpam.v15i3.4426Keywords:
2-resolving set, 2-resolving dominating set, 2R-domination number, lexicographic product of two graphsAbstract
Let G be a connected graph. An ordered set of vertices {v1, ..., vl} is a 2-resolving set for G if, for any distinct vertices u, w ∈ V (G), the lists of distances (dG(u, v1), ..., dG(u, vl)) and (dG(w, v1), ..., dG(w, vl)) differ in at least 2 positions. A 2-resolving set S ⊆ V (G) which is
dominating is called a 2-resolving dominating set or simply 2R-dominating set in G. The minimum cardinality of a 2-resolving dominating set in G, denoted by γ2R(G), is called the 2R-domination number of G. Any 2R-dominating set of cardinality γ2R(G) is then referred to as a γ2R-set in G. This study deals with the concept of 2-resolving dominating set of a graph. It characterizes the 2-resolving dominating set in the join, corona and lexicographic product of two graphs and determine the bounds or exact values of the 2-resolving dominating number of these graphs.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 European Journal of Pure and Applied Mathematics

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Upon acceptance of an article by the journal, the author(s) accept(s) the transfer of copyright of the article to European Journal of Pure and Applied Mathematics.
European Journal of Pure and Applied Mathematics will be Copyright Holder.