On Quotient INK-algebras

Authors

DOI:

https://doi.org/10.29020/nybg.ejpam.v18i4.6501

Keywords:

INK-algebras, ideal, normal subset, partitions, quotient INK-algebras

Abstract

This paper introduces  the notion of  quotient INK-algebra  $(X, *, 0)$. We formalize the notion of congruence relations in INK-Algebras, proving that the set of equivalence classes forms a partition. Additionally, we define a normal subset $N$ of $X$  and show that the quotient set $X/N =\{[x]_{\small N}|x\in X\}$ where $[x]_N=\{y\in X|x\underset{N}{\sim}y\}$  and a binary operation $\odot$ on $X/N$  such that  $[x]_N\odot[y]_N=[x\ast y]_N$  for all \ $[x]_N,[y]_N\in X/N$  forms a  quotient INK-algebra.  

Author Biography

  • Maliwan Phattarachaleekul, Department of Mathematics, Faculty of Science, Mahasarakham University, Maha Sarakham 44150, Thailand

    Asst. Prof. Dr. /  Mathematics Department

Downloads

Published

2025-11-05

Issue

Section

Algebra

How to Cite

On Quotient INK-algebras. (2025). European Journal of Pure and Applied Mathematics, 18(4), 6501. https://doi.org/10.29020/nybg.ejpam.v18i4.6501