Hankel Determinant and Toeplitz Determinant on the Class of Bazileviˇc Functions Related to the Lemniscate Bernoulli

Authors

DOI:

https://doi.org/10.29020/nybg.ejpam.v16i2.4772

Keywords:

Coefficients, Bazilevi\v{c} functions, Lemniscate Bernoulli, Subordination, Hankel determinant, Toeplitz determinants

Abstract

In this papers, we investigate the Hankel determinant and Toeplitz determinant for the class Bazileviˇc Function B1(α, δ) related to the Bernoulli Lemniscate function on the unit disk D = {z : |z| < 1} and obtain the upper bounds of the determinant H2(1), H2(2), T2(1), and investigate H2(1) using coefficients invers function. We used lemma from Charateodory-Toeplitz and Libera about sharp inequalities for functions with positive real part.

Downloads

Published

2023-04-30

How to Cite

Ni Made Asih, Sa’adatul Fitri, Ratno Bagus Edy Wibowo, & Marjono. (2023). Hankel Determinant and Toeplitz Determinant on the Class of Bazileviˇc Functions Related to the Lemniscate Bernoulli. European Journal of Pure and Applied Mathematics, 16(2), 1290–1301. https://doi.org/10.29020/nybg.ejpam.v16i2.4772

Issue

Section

Nonlinear Analysis