Estimation and Selection in Regression Clustering
Keywords:
Regression clustering, Least squares, Model SelectionAbstract
Regression clustering is an important model-based clustering tool having applications in a variety of disciplines. It discovers and reconstructs the hidden structure for a data set which is a random sample from a population comprising a fixed, but unknown, number of sub-populations, each of which is characterized by a class-specific regression hyperplane. An essential objective, as well as a preliminary step, in most clustering techniques including regression clustering, is to determine the underlying number of clusters in thedata. In this paper, we briefly review regression clustering methods and discuss how to determine the underlying number of clusters by using model selection techniques, in particular, the information-based technique. A computing algorithm is developed for estimating the number of clusters and other parameters in regression clustering. Simulation studies are also provided to show the performance of the algorithm.
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Upon acceptance of an article by the journal, the author(s) accept(s) the transfer of copyright of the article to European Journal of Pure and Applied Mathematics.
European Journal of Pure and Applied Mathematics will be Copyright Holder.