Distance k-Cost Effective Sets in the Corona and Lexicographic Product of Graphs
DOI:
https://doi.org/10.29020/nybg.ejpam.v16i1.4381Keywords:
Distance k-cost effective set, upper distance k-cost effective number, distance k-domonating setAbstract
Let G be a connected graph and k ≥ 1 be an integer. The open k-neighborhood Nk G(v) of v ∈ V (G) is the set Nk G(v) = {u ∈ V (G) \ {v}: dG(u, v) ≤ k}. A set S of vertices of G is called distance k-cost effective of G if for every vertex u in S, |Nk G(u) ∩ (V (G) \ S)| − |Nk G(u) ∩ S| ≥ 0. The maximum cardinality of a distance k-cost effective set of G is called the upper distance k-cost effective number of G. In this paper, we characterized the distance k-cost effective sets in the corona and lexicographic product of two graphs. Consequently, the bounds or the exact values of the upper distance k-cost effective numbers of these graphs are obtained.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 European Journal of Pure and Applied Mathematics

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Upon acceptance of an article by the journal, the author(s) accept(s) the transfer of copyright of the article to European Journal of Pure and Applied Mathematics.
European Journal of Pure and Applied Mathematics will be Copyright Holder.