Generalized Fractional Integral Extensions of Hermite-Hadamard Inequalities via Extended Mittag-Leffler Kernel

Authors

  • Saima Naheed University of Sargodha, Pakistan
  • Adeeba Rafi University of Sargodha, Pakistan
  • Gauhar Rehman Hazara University, Mansehra, Pakistan
  • Irshad Ayoob Prince Sultan University, Riyadh, Saudi Arabia
  • Nabil Mlaiki Prince Sultan University, Riyadh, Saudi Arabia

DOI:

https://doi.org/10.29020/nybg.ejpam.v18i2.6089

Keywords:

Atangana-Baleanu fractional calculus; Fractional calculus; Hermite-Hadamard inequality; Generalized fractional integral operators; Mittag-Leffler function

Abstract

In this article, we provid a number of Hermite-Hadamard type fractional integral inequalities for the Atangana-Baleanu and Prabhakar fractional operators, using extended generalized Mittag-Leffler functions as their kernel. Significant findings are provided for the integral inequalities involving fractional integrals of the type $({{\Im_1}}+, {{\Im_2}}-)$ and $(\frac{{{\Im_1}} + {{\Im_2}}}{2})$. By employing certain functions to create visual graphs with matching numerical entries that depict the inequalities, we show the veracity of our findings.

Downloads

Published

2025-05-01

Issue

Section

Mathematical Analysis

How to Cite

Generalized Fractional Integral Extensions of Hermite-Hadamard Inequalities via Extended Mittag-Leffler Kernel. (2025). European Journal of Pure and Applied Mathematics, 18(2), 6089. https://doi.org/10.29020/nybg.ejpam.v18i2.6089