Generalized Extended Confluent, Whittaker $k$-functions and Their Properties

Authors

  • Syed Ali Haider Shah Department of Mathematics, University of Sargodha, Sargodha 40100, Pakistan
  • Mujahid Hussain Shah Department of Mathematics, University of Sargodha, Sargodha 40100, Pakistan
  • Miguel Vivas-Cortez Escuela de Ciencias F\'{i}sicas y Matem\'{a}ticas, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Cat\'{o}lica del Ecuador, Av. 12 de Octubre 1076, Apartado, Quito 17-01-2184, Ecuador
  • Shahid Mubeen Department of Mathematics, Baba Guru Nanak University, Nankana Sahib 3900, Pakistan
  • Gauhar Rahman Department of Mathematics \& Statistics, Hazara University, Mansehra 21300, Pakistan

DOI:

https://doi.org/10.29020/nybg.ejpam.v18i3.6279

Keywords:

Gamma $k$-function, Beta $k$-function, Whittaker $k$-function, Hankel transform, Mellin transform

Abstract

The main objective of this research paper is to explore  further generalization of confluent hypergeometric and Whittaker functions by introducing a new parameter $k>0$, in generalized extended confluent hypergeometric and Whittaker functions defined by Khan \emph{et al.} \cite{m7}. We also investigate some properties such as integral representations, Mallin transforms, Hankel, Laplace transformations and derivative of these new generalized extended confluent hypergeometric and Whittaker $k$-functions. We also obtain Riemann-Liouville fractional integral and Riemann-Liouville $k$-fractional integral of these new generalized extended Whittaker $k$-function.

Downloads

Published

2025-08-03

Issue

Section

Mathematical Physics

How to Cite

Generalized Extended Confluent, Whittaker $k$-functions and Their Properties. (2025). European Journal of Pure and Applied Mathematics, 18(3), 6279. https://doi.org/10.29020/nybg.ejpam.v18i3.6279